

Copyright © 2016 JvR Psychometrics Pty Ltd. All rights reserved. For more information, contact research@jvrafrica.co.za or any of the offices below.

Copyright © 2003, 2005, 2013, 2016 by JvR Psychometrics (Pty) Ltd. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or media or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in South Africa.

JvR Psychometrics forms part of the JvR Africa Group

JOHANNESBURG OFFICE

15 hunter avenue | ferndale | randburg | johannesburg | 2194 p.o. box 2560 | pinegowrie | 2123 | johannesburg | south africa +27 11 781 3705/6/7 (tel) | +27 11 781 3703 (fax) info@jvrafrica.co.za (email)

CAPE TOWN OFFICE

3rd floor | imperial bank terraces | tyger waterfront | carl cronje drive | bellville p.o. box 5534 | tygervalley | 7536 | cape town | south africa +27 861 333 916 (tel) | +27 861 004 225 (fax) capeinfo@jvrafrica.co.za (email)

FREE STATE OFFICE

8 hugenote street | jordania | bethlehem | 9700 | south africa +27 58 303 3843 (tel) | freestate-info@jvrafrica.co.za (email)

Co.Reg.No. 2001/015618/07 VAT Reg.No. 4300195064

Acknowledgements

The LCI 5th edition is a revision of the LCI 4th edition developed by Professor Johann M Schepers. The Research Department at JvR is responsible for all changes that were made to the instrument and research done on the instrument. The Technical Manual and all analyses were written and conducted by Brandon Morgan. Users of the LCI 5th edition should reference the instrument as Schepers (2016).

Contents

	Acknowledgements
1. Introduction	9
1.1 Main features / brief overview	9
1.2 Purpose and rationale	9
1.3. History of the product	9
1.4 Development of the LCI 5 th edition	
2. Interpreting and use of the results	
2.1 Autonomy	
2.2 Internal locus of control	
2.3 External locus of control	
2.4 Association of the basic scores with other m	easures13
3. Norming	
4. Psychometric properties: Reliability and validity	
4.1 Study 1	
4.1.1 Reliability	
4.1.2 Item Descriptive Statistics	
4.1.3 Rasch analysis combined sample	
4.1.4 Rasch analysis gender	
4.1.5 Rasch analysis ethnicity	
4.1.6 Construct validity combined sample	
4.1.7 Construct validity Men	
4.1.8 Construct validity Women	
4.1.9 Construct validity Black	

4.1.10 Construct validity White	49
4.1.11 Measurement invariance	51
4.1.12 Differential item functioning	53
4.1.13 Differential test functioning	57
4.1.14 Correlation coefficients	58
4.1.15 Mean score differences for gender	59
4.1.16 Mean score differences for Ethnicity	59
4.1.17 Summary	60
4.2 Study 2	60
4.2.1 Descriptive Statistics	60
4.2.2 Reliability	62
4.2.3 Item Descriptive Statistics	65
4.2.4 Rasch analysis	67
4.2.5 Rasch analysis gender	70
4.2.6 Rasch analysis ethnicity	77
4.2.7 Construct validity	83
4.2.8 Construct validity Men	85
4.2.9 Construct validity women	87
4.2.10 Construct validity Black	
4.2.11 Construct validity White	92
4.2.12 Measurement invariance	94
4.2.13 Differential item functioning	95
4.2.14 Differential test functioning	99
4.2.15 Correlation coefficients	99
4.2.16 Mean score differences for Gender	
4.2.17 Mean score differences for Ethnicity	
4.2.18 Summary	
5. Comparison of norm scores	
6. Frequency of profile scores	
7. R packages	
8. Conclusion	
9. References	

List of Tables

Table 1: Descriptive Statistics for the Scale Scores: Study 1	15
Table 2: Reliability Coefficients for the Scale Items: Study 1	17
Table 3: Reliability Coefficients for the Scale Items for Men: Study 1	18
Table 4: Reliability Coefficients for the Scale Items for Women: Study 1	18
Table 5: Reliability Coefficients for the Scale Items for Black Respondents: Study 1	19
Table 6: Reliability Coefficients for the Scale Items for White Respondents: Study 1	19
Table 7: Item Level Descriptive Statistics for the Autonomy Scale: Study 1	20
Table 8: Item Level Descriptive Statistics for the Internal Locus of Control Scale: Study 1	21
Table 9: Item Level Descriptive Statistics for the External Locus of Control Scale: Study 1	22
Table 10: Autonomy Item Location and Item Fit Statistics: Study 1	24
Table 11: Internal Locus of Control Item Location and Item Fit Statistics: Study 1	25
Table 12: External Locus of Control Item Location and Item Fit Statistics: Study 1	26
Table 13: Autonomy Item Location and Item Fit Statistics for Men: Study 1	27
Table 14: Autonomy Item Location and Item Fit Statistics for Women: Study 1	28
Table 15: Internal Locus of Control Item Location and Item Fit Statistics for Men: Study 1	29
Table 16: Internal Locus of Control Item Location and Item Fit Statistics for Women: Study 1	30
Table 17: External Locus of Control Item Location and Item Fit Statistics for Men: Study 1	31
Table 18: External Locus of Control Item Location and Item Fit Statistics for Women: Study 1	32
Table 19: Autonomy Item Location and Item Fit Statistics for Black Respondents: Study 1	34
Table 20: Autonomy Item Location and Item Fit Statistics for White Respondents: Study 1	35
Table 21: Internal Locus of Control Item Location and Item Fit Statistics for Black Respondents: Study	y 136
Table 22: Internal Locus of Control Item Location and Item Fit Statistics for White Respondents:	
Study 1	37
Table 23: External Locus of Control Item Location and Item Fit Statistics for Black Respondents:	
Study 1	38
Table 24: External Locus of Control Item Location and Item Fit Statistics for White Respondents:	
Study 1	39
Study 1	
Table 25: Unstandardised and Standardised Factor Loadings: Study 1	40
•	
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1	42 45
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1	42 45
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1	42 45 47
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1	42 45 47 49
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1	42 45 47 49 52
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1Table 30: Measurement Invariance for Gender: Study 1Table 31: Measurement Invariance for Ethnicity: Study 1Table 32: Uniform and Non-Uniform DIF by Gender: Study 1	42 45 47 52 53 54
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1Table 30: Measurement Invariance for Gender: Study 1Table 31: Measurement Invariance for Ethnicity: Study 1	42 45 47 52 53 54
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1Table 30: Measurement Invariance for Gender: Study 1Table 31: Measurement Invariance for Ethnicity: Study 1Table 32: Uniform and Non-Uniform DIF by Gender: Study 1	42 45 47 52 53 54 56
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1Table 30: Measurement Invariance for Gender: Study 1Table 31: Measurement Invariance for Ethnicity: Study 1Table 32: Uniform and Non-Uniform DIF by Gender: Study 1Table 33: Uniform and Non-Uniform DIF by Ethnicity: Study 1	42 45 47 52 53 54 56 58
Table 25: Unstandardised and Standardised Factor Loadings: Study 1Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1Table 30: Measurement Invariance for Gender: Study 1Table 31: Measurement Invariance for Ethnicity: Study 1Table 32: Uniform and Non-Uniform DIF by Gender: Study 1Table 33: Uniform and Non-Uniform DIF by Ethnicity: Study 1Table 34: Differential Test Functioning: Study 1	42 45 47 52 53 54 56 58 58 61

Table 38: Reliability Coefficients for the Scale Items for Men: Study 2	63
Table 39: Reliability Coefficients for the Scale Items for Women: Study 2	64
Table 40: Reliability Coefficients for the Scale Items for Black Respondents: Study 2	64
Table 41: Reliability Coefficients for the Scale Items for White Respondents: Study 2	64
Table 42: Item Level Descriptive Statistics for the Autonomy Scale: Study 2	65
Table 43: Item Level Descriptive Statistics for the Internal Locus of Control Scale: Study 2	66
Table 44: Item Level Descriptive Statistics for the External Locus of Control Scale: Study 2	66
Table 45: Autonomy Item Location and Item Fit Statistics: Study 2	68
Table 46: Internal Locus of Control Item Location and Item Fit Statistics: Study 2	69
Table 47: External Locus of Control Item Location and Item Fit Statistics: Study 2	70
Table 48: Autonomy Item Location and Item Fit Statistics for Men: Study 2	71
Table 49: Autonomy Item Location and Item Fit Statistics for Women: Study 2	72
Table 50: Internal Locus of Control Item Location and Item Fit Statistics for Men: Study 2	73
Table 51: Internal Locus of Control Item Location and Item Fit Statistics for Women: Study 2	74
Table 52: External Locus of Control Item Location and Item Fit Statistics for Men: Study 2	75
Table 53: External Locus of Control Item Location and Item Fit Statistics for Women: Study 2	76
Table 54: Autonomy Item Location and Item Fit Statistics for Black Respondents: Study 2	77
Table 55: Autonomy Item Location and Item Fit Statistics for White Respondents: Study 2	78
Table 56: Internal Locus of Control Item Location and Item Fit Statistics for Black Respondents: Stu	ıdy 279
Table 57: Internal Locus of Control Item Location and Item Fit Statistics for White Respondents:	
Study 2	80
Table 58: External Locus of Control Item Location and Item Fit Statistics for Black Respondents:	
Study 2	81
Table 59: External Locus of Control Item Location and Item Fit Statistics for White Respondents:	
Study 2	82
Table 60: Unstandardised and Standardised Factor Loadings: Study 2	83
Table 61: Unstandardised and Standardised Factor Loadings for Men: Study 2	85
Table 62: Unstandardised and Standardised Factor Loadings for Women: Study 2	88
Table 63: Unstandardised and Standardised Factor Loadings For Black Respondents: Study 2	90
Table 64: Unstandardised and Standardised Factor Loadings for White Respondents: Study 2	92
Table 65: Measurement Invariance for Gender: Study 2	
Table 66: Measurement Invariance for Ethnicity: Study 2	95
Table 67: Uniform and Non-Uniform DIF by Gender: Study 2	95
Table 68: Uniform and Non-Uniform DIF by Ethnicity: Study 2	
Table 69: Differential Test Functioning: Study 1	
Table 70: Pearson and Spearman-Rho Rank Order Correlations: Study 2	100
Table 71: Comparison of Norm Scores on the Internal and External Locus of Control Scales	104

List of Figures

Figure 1: Histogram and beanplot for the Autonomy scale	16
Figure 2: Histogram and beanplot for the Internal locus of control scale	16
Figure 3. Histogram and beanplot for the External locus of control scale	17
Figure 4: Histogram and beanplot for the Autonomy scale	61
Figure 5: Histogram and beanplot for the Internal locus of control scale	62
Figure 6: Histogram and beanplot for the External locus of control scale	62

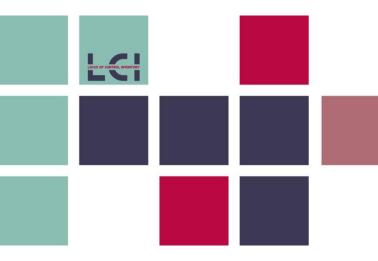
1. Introduction

1.1 Main features / brief overview

The Locus of Control Inventory (LCI) 5th edition is a multidimensional measure of locus of control. It consists of 45 items and takes approximately 15 to 30 minutes to complete. The LCI is an online assessment hosted by JvR Online and is suited for students and adults.

1.2 Purpose and rationale

The LCI is based on attribution theory and Rotter's social learning theory. It consists of three scales: Autonomy, Internal locus of control, and External locus of control. The Gunning Fog index for the LCI 5th edition is 10.3¹. Further details on the purpose and rationale of the LCI and its theoretical underpinning are provided in the Technical Manual.


1.3. History of the product

 $^{^{1}\;}$ The Gunning Fog index was calculated using the koRpus package in R.

The first version of the LCI was developed in 1994. It was subsequently revised in 1995, 1999, and 2003. The LCI 5th edition is based on the 2003 revision. A detailed exposition of the development of the LCI is provided in the Technical Manual (Schepers, 2013).

1.4 Development of the LCI 5th edition

The LCI 4th edition consists of 88 items across three scales: Autonomy, Internal locus of control, and External locus of control. The three scales have demonstrated mostly satisfactory psychometric properties across a range of studies (Berg, Buys, Olckers, & Schaap, 2004; de Bruin, 2004; Schaap, Buys, & Olckers, 2003; Schepers, 2005, 2007; Schepers, Gropp, & Geldenhuys, 2006). An updated psychometric analysis of the LCI 4th edition items was conducted in 2015 on a sample of 656 working adults to investigate the factor structure, item fit, and differential item functioning across gender and ethnicity (the full report is available as a research supplement). The results mostly mirrored those obtained by the aforementioned authors. However, there was some evidence of potentially problematic items. It was therefore decided to develop a shorter version of the LCI in which potentially problematic items were removed to reduce the total number of items needed for each scale. Potentially problematic items were removed in an iterative fashion based on the psychometric analysis of the LCI until 15 items for each scale remained. First, all items displaying statistically significant differential item functioning across gender and ethnicity were removed. Hereafter items that displayed non-significant unstandardised factor loadings, small standardised factor loadings, and/or low communality values were removed. Lastly, items that shared similar item content and demonstrated correlated residuals were removed.

2. Interpreting and use of the results

Rotter defined locus of control as a generalised expectancy concerned with the causal sequence from behaviour to outcome (Pervin & John, 2001; Rotter, 1966). Because locus of control is a general belief about what determines outcomes (Rotter, 1966), it operates over a range of situations (Lefcourt, 1966). The predictive power of locus of control, however, depends upon the novelty of the situation and the degree to which a person relies on specific expectancies, rather than generalised expectancies in determining behaviour and expected outcomes (Coombs & Schroeder, 1988; Rotter, 1975; Wang, Bowling, & Eschleman, 2010). The LCI yields three scores: Autonomy, Internal locus of control, and External locus of control. The three constructs are defined as follows:

2.1 Autonomy

Autonomy is closely related to Internal locus of control. It is defined as "the tendency to attempt to master or be effective in the environment, to impose one's wishes and designs on it" (Wolman, 1973, p. 37). People who score high on Autonomy tend to seek control of situations that offer possibilities of change, readily accept the challenge of solving complex problems, take the initiative in situations requiring leadership, prefer to work on their own, and choose to structure their own work programme. People who score low on Autonomy may feel uncomfortable when change occurs and may prefer having others take initiative in situations requiring leadership. They may also prefer structured environments where change does not readily occur.

2.2 Internal locus of control

Internal locus of control is a person's belief that an outcome "is contingent on their own behavior or personal characteristics" (Rotter, 1966, p. 56). People who score high on Internal locus of control are convinced that the reinforcement of their behaviour depends on their own achievements, abilities, dedication and perseverance. Thus the outcome of their behaviour will change the probability of that behaviour occurring again in the specific situation (Rotter, 1966). People who score high on Internal locus of control tend to view their achievement as a result of hard work and dedication, believe that achievement of personal objectives depends on themselves and that reward for achievement is earned, and view the outcome of matters as determined by their own inputs. A high score on Internal locus of control implies that a person's expectation of control is internal. A low score on Internal locus of control implies that a person may not accept achievements as due to his/her hard work and dedication, that reward for achievement is not earned, and that success depends on being at the right place at the right time.

2.3 External locus of control

External locus of control is a person's belief that an outcome is "a function of chance, luck, or fate, is under the control of powerful others, or is simply unpredictable" (Rotter, 1990, p. 56). People who score high on External locus of control tend to believe that random or chance events, luck, or influential people are responsible for their behaviour. In this way, people may believe that they do not have control over outcomes and may not rely on previous experiences when selecting a particular behaviour (Rotter, 1966). People who score high on External locus of control tend to believe that their behaviour (Rotter, 1966). People who score high on External locus of control tend to believe that their behaviour is subject to fate and is influenced by coincidences, that present achievements are adversely affected by negative experiences in the past, and that only people who are at the right place at the right time get promoted. A high score on External locus of control implies that a person's expectation of control is external. A low score on External locus

of control implies that a person does not believe that his/her behaviour is subject to the whims of fate, that life is not controlled by coincidence and fate, and that rewards and promotions are earned.

2.4 Association of the basic scores with other measures

The LCI has been correlated with a variety of constructs. These include personality, sense of coherence, and emotional intelligence, among others. Further information on these relationships are provided in the Technical Manual (Schepers, 2013).

Image: Constraint of the second of

3. Norming

Two samples were used for psychometric analysis and norming of the LCI. A total of 1075 respondents were used to obtain the norm scores. In Study 1 the 45 LCI – Short items were analysed based on a subset of the sample group from which the full psychometric analysis was conducted. Respondents were 644 working adults obtained from the JvR database. Two ethnic groups were selected from the pooled database for inclusion in the analysis. These were Black participants (n = 371, 58%) and White participants (n = 274, 42%). There were insufficient numbers of respondents from the Coloured and Indian/Asian ethnic groups to make analysis of the data feasible. There were more men (n = 484, 75%) than women (n = 161, 25%) in the sample. The psychometric properties of the 45 items were then re-analysed on a second sample group (Study 2) in order to cross-validate the results.

In Study 2, respondents were 431 working adults obtained from the JvR database who had completed the full version of the LCI. The majority of respondents were from the Black (n = 152, 35%) and White (n = 124, 29%) ethnic groups. The remainder were from the Indian/Asian (n = 16, 4%) and Coloured (n = 11, 3%) ethnic groups. One-hundred-and-twenty-eight (30%) of the respondents did not indicate their ethnic group. There were more men (n = 277, 64%) than women (n = 153, 35%) in the sample. The home language of the respondents were: Afrikaans (n = 133, 31%), English (n = 91, 21%), Ndebele (n = 2, .5%), Pedi (n = 42, 10%), Sotho (n = 17, 4%), Swazi (n = 1, .2%), Tsonga (n = 10, 2%), Tswana (n = 21, 5%), Venda (n = 8, 2%), Xhosa (n = 8, 2%), Zulu (n = 18, 4%), and not indicated (n = 80, 19%).

Keliability and validity

Any test used in practice needs to demonstrate satisfactory reliability and validity (Salkind, 2011). In the sections that follow evidence of reliability and construct validity for the LCI across the two sample groups are provided.

4.1 Study 1

Descriptive statistics for the three LCI 5th edition scales are presented in Table 1. Histograms and bean plots for the scale scores are provided in Figure 1 to Figure 3. Inspection of these plots indicate that the Autonomy and Internal locus of control scales are negatively skewed (i.e., most people scored higher on these scales) and that the External locus of control scale is positively skewed (i.e., most people score low on this scale).

Scale	Mean	SD	Median	Skewness	Kurtosis	SE
Autonomy	88.49	8.39	89.00	-0.29	-0.31	0.33
Internal	92.24	7.58	93.00	-0.41	-0.46	0.30
External	42.52	12.85	41.00	0.38	-0.23	0.51

Table 1: Descriptive Statistics for the Scale Scores: Study 1

Note. SD = standard deviation, SE = Standard error.

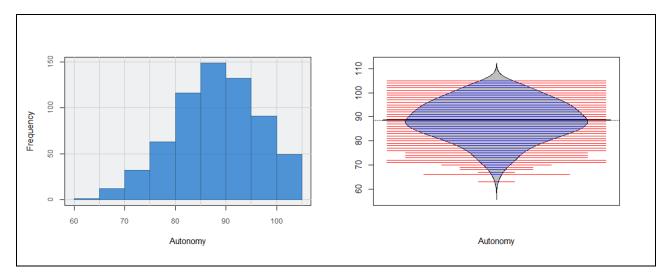


Figure 1: Histogram and beanplot for the Autonomy scale.

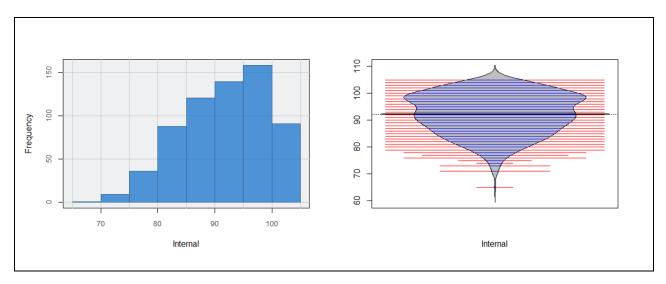


Figure 2: Histogram and beanplot for the Internal locus of control scale.

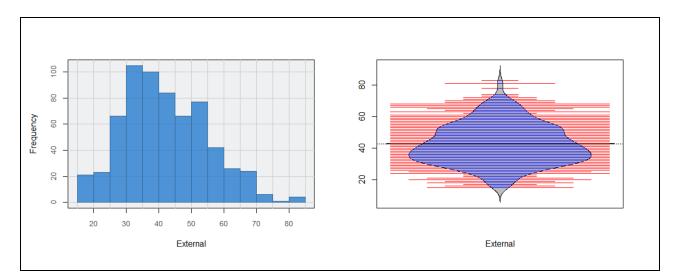


Figure 3. Histogram and beanplot for the External locus of control scale.

4.1.1 Reliability

External

Reliability coefficients for the LCI 5th edition scales are presented in Table 2. Cronbach alpha coefficients (Cronbach, 1951), Guttman's Lambda 2 (Guttman, 1945), and McDonald's Omega total (McDonald, 1999; Revelle & Zinbarg, 2009) were used as measures of reliability. Item and Person separation reliability estimates from a Rasch analysis² are also presented. Item and person reliability indices indicate the extent to which item/person locations can be reproduced (Linacre, 2016a). As a whole the reliability coefficients were all satisfactory.

			,		
Scale	α	λ2	ω	IR	PR
Autonomy	.82 (.7985)	.82	.84	.96	.80
Internal	.76 (.7279)	.76	.77	.93	.70

.85

Table 2: Reliability Coefficients for the Scale Items: Study 1

Note. 95% confidence intervals for α in parentheses. IR = Item separation reliability, PR = Person separation reliability.

.84

.98.

.82

.84 (.82 - .87)

² All Rasch analyses were conducted using Winsteps (Linacre, 2016b).

Reliability coefficients for gender and ethnicity are provided in Tables 3 to 6. The technique described by Feldt, Woodruff, and Salih (1987) was used to determine if there is a statistically significant difference between the Cronbach alpha coefficients for gender and ethnicity. The results indicated that there was no statistically significant difference in the alpha coefficients for men and women on the Autonomy (p = .09) and Internal locus of control (p = .77) scales and that there was a statistically significant difference on the External locus of control (p = .03) scale.

Table 3: Reliability Coefficients for the Scale Items for Men: Study 1

Scale	α	λ_2	ω	IR	PR	
Autonomy	.81 (.7884)	.81	.82	.95	.80	
Internal	.76 (.7280)	.76	.77	.89	.71	
External	.85 (.8288)	.85	.85	.98	.83	

Note. 95% confidence intervals for α in parentheses.

Table 4: Reliability Coefficients for the Scale Items for Women: Study 1

Scale	α	λ_2	ω	IR	PR	
Autonomy	.85 (.8090)	.85	.86	.93	.82	
Internal	.75 (.6882)	.76	.78	.52	.66	
External	.80 (.7486)	.80	.80	.94	.90	

Note. 95% confidence intervals for α in parentheses.

For ethnicity there was no statistically significant difference in the alpha coefficients for the Autonomy (p = .36) and Internal locus of control (p = .74) scales while there was a statistically significant difference on the External locus of control (p = .01) scale. However, because in both cases, the reliability coefficients were high for all comparison groups (above .80), this difference

is not seen to have a great impact on the overall interpretation of results on the External locus of control scale across groups.

Scale	α	0 α	λ ₂	ω	IR	PR
Autonomy	.81 (.7885)	.89	.82	.83	.92	.78
Internal	.75 (.7080)	.89	.76	.77	.91	.67
External	.82 (.7986)	.85	.83	.83	.97	.80

Table 5: Reliability Coefficients for the Scale Items for Black Respondents: Study 1

Note. 95% confidence intervals for α in parentheses.

Table 6: Reliability Coefficients for the Scale Items for White Respondents: Study 1

Scale	α	0 α	λ2	ω	IR	PR
Autonomy	.83 (.7987)	.89	.84	.84	.92	.83
Internal	.76 (.8081)	.88	.77	.78	.83	.74
External	.87 (.8490)	.88	.87	.87	.97	.86

Note. 95% confidence intervals for α in parentheses.

4.1.2 Item Descriptive Statistics

The average inter-item correlation coefficients and item-total correlation coefficients for the LCI 5th edition scale items are presented in Table 7 to Table 9. The item-total correlation coefficient is an estimate of the correlation between the item and the total summated scale score. Positive item-total correlation coefficients indicate that the item is able to discriminate between people who score high and low on the scale (Murphy & Davidshofer, 2005). The average inter-item correlation coefficients and item-total correlation coefficients were positive across all the scales.

ltem	Mean	SD	Average R	R Cor	R Drop
i1A	5.30	1.46	.26	.35	.32
i2A	5.50	1.04	.25	.48	.44
i3A	6.00	1.10	.25	.48	.43
I4A	5.90	.98	.25	.43	.39
i5A	5.50	1.21	.25	.45	.41
i6A	6.10	.98	.24	.57	.51
i7A	6.00	.98	.25	.49	.45
i8A	6.50	.76	.24	.59	.53
i9A	6.00	1.13	.25	.43	.39
i10A	6.50	.82	.25	.41	.37
i11A	5.90	1.08	.25	.42	.38
i12A	6.00	1.05	.24	.59	.53
i13A	5.60	.96	.24	.58	.52
i14A	6.00	.95	.24	.62	.55
i15A	5.80	1.00	.24	.58	.52

Table 7: Item Level Descriptive Statistics for the Autonomy Scale: Study 1

Note. Average R = average inter-item correlation, R Cor = item whole correlation corrected for item overlap and scale reliability, R Drop = item whole correlation against the scale without the item.

ltem	Mean	SD	Average R	R Cor	R Drop
i1l	5.60	1.21	.20	.24	.20
i2I	6.10	1.11	.18	.46	.39
i3I	6.10	1.11	.19	.36	.31
i4I	6.40	.90	.18	.53	.46
i5I	6.20	1.15	.20	.24	.20
i6I	6.30	.98	.18	.51	.45
i7I	6.40	.84	.18	.49	.42
i8I	6.00	1.27	.18	.50	.43
i9I	6.00	1.27	.19	.32	.28
i10I	6.40	.85	.18	.41	.35
i11I	6.00	1.19	.18	.48	.41
i12I	6.00	1.00	.18	.56	.48
i13I	6.10	1.17	.19	.36	.31
i14I	6.50	.70	.18	.53	.46
i15I	6.10	.98	.18	.45	.38

Table 8: Item Level Descriptive Statistics for the Internal Locus of Control Scale: Study 1

Note. Average R = average inter-item correlation, R Cor = item whole correlation corrected for item overlap and scale reliability, R Drop = item whole correlation against the scale without the item.

Item	Mean	SD	Average R	R Cor	R Drop
i1E	2.90	1.40	.27	.49	.45
i2E	2.70	1.50	.27	.49	.45
i3E	2.60	1.40	.27	.49	.44
i4E	2.70	1.50	.26	.54	.49
i5E	2.30	1.50	.26	.54	.49
i6E	2.20	1.40	.26	.61	.55
i7E	3.10	1.60	.26	.56	.52
i8E	4.00	1.60	.27	.48	.44
i9E	1.90	1.50	.27	.38	.35
i10E	2.20	1.50	.26	.60	.55
i11E	3.20	1.70	.26	.60	.55
i12E	3.60	1.60	.27	.39	.36
i13E	2.80	1.50	.26	.55	.50
i14E	3.20	1.70	.26	.61	.56
i15E	3.10	1.50	.27	.40	.37

Table 9: Item Level Descriptive Statistics for the External Locus of Control Scale: Study 1

Note. Average R = average inter-item correlation, R Cor = item whole correlation corrected for item overlap and scale reliability, R Drop = item whole correlation against the scale without the item.

4.1.3 Rasch analysis combined sample

A Rasch (1960) partial-credit model (Wright & Masters, 1982) analysis was conducted on each scale of the LCI 5th edition. Items with Infit and Outfit mean squares values (IMNSQ and OMNSQ) > 1.40 were considered to be underfitting items, and items with IMNSQ and OMNSQ values < .60 to be overfitting items (Bond & Fox, 2007; Wright, Linacre, Gustafson, & Martin-Lof, 1994). Underfitting items are particularly problematic because they degrade the quality of the scale (Bond & Fox, 2007). OMNSQ investigates unexpected responses to items that are either too easy

or too difficult for the respondent, whereas IMNSQ investigates unexpected responses on items that are targeted at the respondents underlying latent ability measure (Linacre, 2016a). The OMNSQ is sensitive to outliers and therefore IMNSQ is a better indicator of item misfit (Bond & Fox, 2007).

4.1.3.1 Autonomy

Item locations and fit statistics for the Autonomy scale are provided in Table 10. The item locations ranged from -.43 to .51 logits. One item demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfi	Outfit		sure
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.51	.04	1.37	5.5	1.64	8.6	.45	.57
i2A	.10	.05	1.04	.7	1.09	1.5	.52	.55
i3A	08	.04	1.01	.2	1.11	1.4	.47	.47
I4A	.11	.05	1.07	1.0	1.16	2.4	.45	.50
i5A	.22	.04	1.14	2.1	1.28	4.1	.49	.55
i6A	27	.05	.89	-1.5	.87	-1.8	.51	.46
i7A	17	.05	.97	3	.96	5	.51	.48
i8A	41	.06	.81	-1.9	.75	-2.9	.50	.38
i9A	.06	.04	1.08	1.0	1.28	3.4	.45	.48
i10A	43	.05	.99	.0	1.00	.0	.39	.37
i11A	.04	.04	1.08	1.0	1.26	3.3	.45	.48
i12A	.11	.04	.87	-1.8	.87	-1.9	.54	.47
i13A	.10	.05	.93	-1.2	.93	-1.2	.57	.54
i14A	.00	.05	.85	-1.8	.87	-1.9	.56	.48
i15A	.11	.05	.90	-1.2	.94	8	.55	.51
Mean	.00	.05	1.00	.1	1.07	.9		
SD	.24	.01	.14	1.9	.22	3.0		

Table 10: Autonomy Item Location and Item Fit Statistics: Study 1

Note. IMNSQ and OMNSQ \geq 1.4 or \leq .60 in bold. Measure is the item location estimate (this applies to all Rasch output Tables).

4.1.3.2 Internal Locus of Control

Item locations and fit statistics for the Internal locus of control scale are provided in Table 11. The item locations ranged from -.31 to .25 logits. Four items demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр
i1l	.25	.04	1.32	4.4	1.50	6.7	.36	.52
i2I	.01	.04	.97	3	1.08	.9	.44	.43
i3I	08	.04	1.07	1.0	1.34	3.6	.40	.43
i41	17	.05	.89	-1.7	.85	-1.8	.44	.39
i5I	.00	.04	1.21	2.4	1.90	7.4	.31	.41
i6I	.03	.04	.88	-1.1	.87	-1.4	.46	.38
i7I	14	.05	.91	8	.91	-1.0	.43	.37
i8I	.23	.04	.95	6	1.07	.8	.48	.44
i91	.22	.04	1.13	1.6	1.60	6.0	.38	.44
i10I	16	.05	.97	3	1.03	.3	.40	.36
i11I	.16	.04	.95	5	1.29	3.3	.46	.44
i12I	08	.05	.90	-1.3	.94	9	.51	.46
i13I	.18	.04	1.08	.9	1.43	4.4	.40	.43
i14I	31	.06	.87	-1.9	.78	-2.6	.43	.34
i15I	13	.05	.99	1	1.08	1.0	.46	.45
Mean	.00	.04	1.01	.1	1.18	1.8		
SD	.17	.01	.13	1.6	.31	3.1		

Table 11: Internal Locus of Control Item Location and Item Fit Statistics: Study 1

4.1.3.3 External Locus of Control

Item locations and fit statistics for the External locus of control scale are provided in Table 12. The item locations ranged from -.55 to .40 logits. One item demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1E	01	.03	1.02	.3	1.01	.2	.47	.48
i2E	.06	.03	1.02	.4	1.05	.9	.47	.47
i3E	.05	.03	1.02	.3	1.09	1.3	.46	.46
i4E	.13	.03	.98	4	.95	9	.50	.48
i5E	.30	.03	.95	8	.89	-1.5	.47	.44
i6E	.34	.03	.83	-2.6	.79	-2.9	.49	.42
i7E	15	.03	.96	6	.95	9	.53	.52
i8E	55	.03	1.09	1.7	1.10	1.9	.53	.57
i9E	.40	.03	1.12	1.6	1.67	5.0	.34	.40
i10E	.30	.03	.87	-2.2	.83	-2.1	.49	.44
i11E	22	.03	.94	-1.1	.99	1	.54	.53
i12E	33	.03	1.23	4.2	1.22	3.9	.47	.56
i13E	.04	.03	.97	6	1.09	1.5	.51	.49
i14E	19	.03	.90	-1.9	.92	-1.5	.57	.53
i15E	17	.03	1.16	2.8	1.32	5.0	.42	.50
Mean	.00	.03	1.00	.1	1.06	.7		
SD	.26	.00	.11	1.8	.21	2.4		

Table 12: External Locus of Control Item Location and Item Fit Statistics: Study 1

4.1.4 Rasch analysis gender

Rasch analysis was conducted separately for men and women³. The same criteria as previously discussed were used to investigate item fit.

³ Each Rasch analysis for gender and ethnicity is not anchored and therefore not on a common metric. Direct comparison of item location values should not be conducted.

4.1.4.1 Autonomy men

Item locations and fit statistics for the Autonomy scale for men are provided in Table 13. The item locations ranged from -.38 to .48 logits. One item demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.48	.04	1.31	4.0	1.64	7.2	.45	.56
i2A	.13	.05	1.08	1.1	1.16	2.1	.50	.54
i3A	03	.05	1.01	.1	1.12	1.3	.46	.46
I4A	17	.06	1.04	.6	1.07	1.0	.48	.50
i5A	.27	.05	1.19	2.3	1.34	4.2	.47	.55
i6A	35	.06	.93	8	.92	9	.48	.45
i7A	14	.05	.95	5	.92	9	.51	.47
i8A	36	.06	.80	-1.7	.73	-2.6	.50	.38
i9A	.12	.05	1.07	.8	1.33	3.3	.44	.47
i10A	38	.06	.93	5	.88	-1.0	.42	.36
i11A	.09	.05	1.11	1.1	1.29	3.1	.43	.47
i12A	.16	.05	.89	-1.3	.89	-1.3	.53	.46
i13A	.11	.06	.97	5	.98	3	.54	.53
i14A	.02	.06	.86	-1.3	.89	-1.2	.55	.46
i15A	.07	.05	.88	-1.4	.90	-1.2	.56	.50
Mean	.00	.05	1.00	.1	1.07	.9		
SD	.24	.01	.13	1.5	.23	2.6		

Table 13: Autonomy Item Location and Item Fit Statistics for Men: Study 3	1
---	---

4.1.4.2 Autonomy women

Item locations and fit statistics for the Autonomy scale for women are provided in Table 14. The item locations ranged from -.84 to .57 logits. Two items demonstrated underfit, one on both fit measures, and the other using the Outfit MNSQ, but not using the Infit MNSQ.

	1						,	
			Infit		Outfi	t	PT-Mea	sure
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.34	.08	1.51	3.9	1.65	4.8	.44	.61
i2A	.18	.10	.91	7	.90	8	.61	.57
i3A	01	.09	1.01	.1	1.00	.1	.50	.50
I4A	.13	.09	1.20	1.3	1.47	3.0	.39	.51
i5A	.57	.08	.97	2	1.03	.3	.57	.56
i6A	19	.09	.78	-1.6	.76	-1.8	.57	.50
i7A	.19	.09	1.07	.6	1.07	.6	.50	.52
i8A	84	.13	.85	-1.4	.78	-1.7	.50	.40
i9A	30	.09	1.03	.3	1.03	.3	.49	.50
i10A	51	.10	1.20	1.2	1.37	1.9	.32	.41
i11A	01	.09	.99	.0	1.15	1.1	.51	.51
i12A	20	.10	.75	-2.3	.73	-2.2	.60	.49
i13A	.56	.10	.83	-1.6	.81	-1.9	.65	.57
i14A	.11	.10	.81	-1.6	.79	-1.8	.59	.51
i15A	02	.09	1.01	.1	1.08	.6	.53	.53
Mean	.00	.09	1.00	1	1.04	.2		
SD	.36	.01	.19	1.5	.27	1.9		

Table 14: Autonomy Item Location and Item Fit Statistics for Women: Study 1

4.1.4.3 Internal Locus of Control men

Item locations and fit statistics for the Internal locus of control scale for men are provided in Table 15. The item locations ranged from -.23 to .22 logits. Five items demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfi	Outfit		sure
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1l	.21	.04	1.29	3.4	1.44	5.1	.37	.51
i2l	.03	.05	.97	3	1.12	1.2	.44	.43
i3I	06	.05	1.12	1.3	1.45	4.1	.38	.43
i41	22	.05	.84	-2.2	.78	-2.4	.48	.40
i5I	05	.05	1.16	1.6	1.88	6.2	.31	.39
i6I	.01	.05	.88	-1.0	.89	-1.0	.47	.38
i7I	12	.06	.93	5	.97	3	.42	.37
i8I	.22	.04	.94	6	1.07	.7	.48	.44
i9I	.20	.04	1.09	.9	1.43	4.0	.39	.44
i10I	15	.06	1.00	.0	1.11	1.0	.39	.36
i11I	.14	.04	.97	3	1.36	3.4	.45	.44
i12I	06	.05	.91	9	.93	8	.51	.46
i13I	.20	.04	1.12	1.1	1.50	4.4	.38	.43
i14I	23	.07	.88	-1.5	.78	-2.3	.44	.34
i15I	12	.05	1.00	.0	1.09	1.0	.46	.45
Mean	.00	.05	1.01	.1	1.19	1.6		
SD	.15	.01	.12	1.4	.30	2.6		

Table 15: Internal Locus of Control Item Location and Item Fit Statistics for Men: Study 1

4.1.4.4 Internal Locus of Control women

Item locations and fit statistics for the Internal locus of control scale for women are provided in Table 16. The item locations ranged from -.32 to .23 logits. Three items demonstrated underfit, one on both measures, and the other two using the Outfit MNSQ, but not using the Infit MNSQ.

		Infit			Outfi	t	PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр
i1l	.23	.08	1.43	2.9	1.64	4.3	.32	.52
i2I	07	.09	1.00	.0	.97	1	.42	.42
i3I	.04	.09	.93	4	1.02	.2	.44	.41
i4I	17	.11	1.06	.4	1.12	.6	.31	.35
i5I	.02	.08	1.28	1.9	1.78	3.4	.35	.45
i6I	07	.10	.92	3	.82	9	.40	.36
i7I	32	.13	.84	9	.75	-1.6	.47	.35
i8I	.05	.08	.97	1	1.09	.6	.44	.42
i9I	.16	.07	1.28	1.7	2.14	4.7	.36	.44
i101	.04	.11	.87	9	.79	-1.2	.45	.35
i11I	.07	.08	.90	5	1.13	.8	.49	.43
i12I	.15	.09	.86	9	.99	.0	.50	.44
i13I	07	.09	.97	2	1.23	1.4	.44	.42
i14I	18	.14	.85	-1.1	.81	9	.41	.30
i15I	.13	.09	.97	1	1.05	.4	.47	.44
Mean	.00	.09	1.01	.1	1.16	.8		
SD	.14	.02	.17	1.1	.39	1.9		

Table 16: Internal Locus of Control Item Location and Item Fit Statistics for Women: Study 1

4.1.4.5 External Locus of Control men

Item locations and fit statistics for the External locus of control scale for men are provided in Table 17. The item locations ranged from -.53 to .38 logits. Two items demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit Outf		Outfi	t	PT-Mea	sure
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1E	02	.04	1.03	.5	1.03	.5	.47	.49
i2E	.07	.04	1.04	.6	1.09	1.2	.47	.48
i3E	.08	.04	1.00	.0	1.07	.8	.47	.46
i4E	.14	.04	1.02	.3	1.00	.0	.50	.49
i5E	.31	.04	.94	8	.88	-1.5	.48	.44
i6E	.33	.04	.77	-3.3	.69	-3.9	.53	.43
i7E	18	.03	.96	7	.94	9	.54	.52
i8E	53	.04	1.10	1.7	1.12	1.9	.53	.57
i9E	.38	.03	1.11	1.4	1.65	4.6	.36	.42
i10E	.26	.03	.87	-1.9	.83	-2.0	.51	.46
i11E	23	.03	.93	-1.1	.99	1	.55	.53
i12E	34	.04	1.24	3.8	1.24	3.7	.46	.56
i13E	.10	.04	.90	-1.6	.88	-1.7	.55	.49
i14E	19	.03	.93	-1.2	.94	9	.57	.54
i15E	19	.04	1.21	3.2	1.43	5.8	.40	.51
Mean	.00	.04	1.00	.1	1.05	.5		
SD	.26	.00	.12	1.8	.23	2.5		

Table 17: External Locus of Control Item Location and Item Fit Statistics for Men: Study 1

4.1.4.6 External Locus of Control women

Item locations and fit statistics for the External locus of control scale for women are provided in Table 18. The item locations ranged from -.61 to .49 logits. Two items demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр
i1E	13	.07	.96	4	.93	6	.46	.46
i2E	.01	.07	.95	4	.96	3	.47	.44
i3E	06	.07	1.01	.1	1.10	.7	.42	.43
i4E	.09	.07	.85	-1.2	.79	-1.6	.49	.42
i5E	.20	.06	.95	4	.88	7	.44	.41
i6E	.36	.08	1.10	.7	1.19	1.2	.31	.35
i7E	.09	.06	1.01	.1	.98	2	.49	.48
i8E	61	.06	1.05	.5	1.05	.6	.53	.55
i9E	.49	.07	1.19	1.1	1.80	2.3	.23	.31
i10E	.42	.07	.91	5	.89	5	.39	.33
i11E	24	.06	.98	1	1.01	.1	.49	.49
i12E	34	.06	1.17	1.6	1.16	1.4	.48	.54
i13E	16	.06	1.13	1.1	1.69	4.4	.40	.46
i14E	11	.06	.84	-1.6	.85	-1.4	.57	.49
i15E	03	.07	1.01	.1	1.01	.1	.46	.47
Mean	.00	.07	1.01	.0	1.09	.4		
SD	.28	.01	.10	.8	.28	1.5		

Table 18: External Locus of Control Item Location and Item Fit Statistics for Women: Study 1

4.1.5 Rasch analysis ethnicity

Rasch analysis was conducted separately for Black and White respondents. The same criteria as previously discussed were used to investigate item fit.

4.1.5.1 Autonomy Black

Item locations and fit statistics for the Autonomy scale for Black respondents are provided in Table 19. The item locations ranged from -.38 to .46 logits. Two items demonstrated underfit, one item on both fit measures, and the other using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.46	.04	1.34	4.0	1.64	.45	.45	.57
i2A	.08	.06	1.08	.9	1.16	.49	.49	.53
i3A	02	.05	.99	1	1.07	.48	.48	.47
I4A	.03	.06	1.12	1.4	1.25	.40	.40	.48
i5A	.21	.05	1.09	1.0	1.27	.49	.49	.53
i6A	30	.06	.90	-1.2	.86	.50	.50	.45
i7A	.01	.06	1.02	.2	.96	.47	.47	.46
i8A	34	.07	.80	-1.5	.75	.50	.50	.37
i9A	.08	.05	1.09	.8	1.45	.41	.41	.46
i10A	38	.07	.96	2	.92	.38	.38	.35
i11A	.08	.05	1.10	.9	1.36	.43	.43	.45
i12A	.06	.06	.89	-1.1	.90	.52	.52	.45
i13A	.17	.06	.91	-1.1	.89	.57	.57	.52
i14A	16	.06	.84	-1.6	.81	.55	.55	.46
i15A	.03	.06	.92	8	.95	.52	.52	.48
Mean	.00	.06	1.00	.1	1.08	.8		
SD	.22	.01	.13	1.4	.25	2.4		

Table 19: Autonomy Item Location and Item Fit Statistics for Black Respondents: Study 1

4.1.5.2 Autonomy White

Item locations and fit statistics for the Autonomy scale for White respondents are provided in Table 20. The item locations ranged from -.62 to .40 logits. One item demonstrated underfit on both fit measures.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.40	.06	1.40	3.9	1.72	6.2	.44	.58
i2A	.33	.08	.99	.0	1.01	.1	.57	.57
i3A	06	.08	1.04	.3	1.12	1.0	.48	.48
I4A	.10	.08	.99	1	1.02	.3	.53	.53
i5A	.30	.07	1.24	2.6	1.33	3.3	.48	.59
i6A	21	.07	.87	-1.1	.88	-1.0	.52	.48
i7A	09	.07	.91	7	.96	4	.56	.50
i8A	62	.10	.83	-1.5	.73	-2.1	.50	.39
i9A	13	.07	1.06	.6	1.05	.5	.51	.52
i10A	44	.08	1.07	.6	1.12	.9	.39	.41
i11A	15	.07	1.06	.7	1.16	1.5	.48	.52
i12A	.04	.07	.85	-1.4	.83	-1.6	.57	.51
i13A	.36	.08	.94	7	.99	1	.58	.56
i14A	.05	.07	.88	8	.99	.0	.57	.50
i15A	.13	.08	.89	9	.94	6	.59	.53
Mean	.00	.08	1.00	.1	1.06	.5		
SD	.28	.01	.15	1.4	.22	2.0		

Table 20: Autonomy Item Location and Item Fit Statistics for White Respondents: Study 1

4.1.5.3 Internal Locus of Control Black

Item locations and fit statistics for the Internal locus of control scale for Black respondents are provided in Table 21. The item locations ranged from -.28 to .27 logits. Five items demonstrated underfit using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1l	.24	.05	1.26	2.6	1.45	4.3	.36	.50
i2I	.12	.05	.91	9	1.00	.1	.48	.45
i3I	14	.05	1.02	.3	1.22	1.7	.40	.42
i4I	23	.07	.93	7	.89	9	.41	.37
i5I	25	.07	1.05	.3	1.66	3.2	.29	.31
i6I	.07	.06	.88	9	.85	-1.1	.45	.38
i7I	20	.07	.92	5	.88	8	.40	.35
i8I	.15	.05	.91	9	.92	6	.49	.44
i9I	.27	.05	1.25	2.1	1.88	6.2	.35	.44
i10I	22	.07	.97	1	1.12	.8	.37	.33
i11I	.24	.05	1.04	.4	1.51	3.9	.44	.44
i12I	.00	.06	.91	8	.96	4	.50	.46
i13I	.22	.05	1.12	1.1	1.50	3.8	.41	.44
i14I	28	.08	.88	-1.0	.76	-1.7	.39	.30
i15I	.02	.06	1.03	.3	1.13	1.2	.42	.43
Mean	.00	.06	1.01	.1	1.18	1.3		
SD	.20	.01	.12	1.1	.33	2.3		

Table 21: Internal Locus of Control Item Location and Item Fit Statistics for Black Respondents: Study 1

4.1.5.4 Internal Locus of Control White

Item locations and fit statistics for the Internal locus of control scale for White respondents are provided in Table 22. The item locations ranged from -.42 to .27 logits. Three items demonstrated underfit, two on both fit measures and one using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfi	t	PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр
i1l	.19	.06	1.43	4.1	1.62	5.7	.32	.53
i2I	06	.07	1.00	.0	1.08	.7	.41	.40
i3I	05	.06	1.16	1.3	1.60	4.3	.35	.44
i4I	15	.07	.83	-1.8	.76	-2.0	.48	.40
i5I	.23	.06	1.43	3.7	2.04	7.5	.28	.49
i6I	13	.08	.87	7	.81	-1.4	.47	.38
i7I	13	.08	.90	6	.94	4	.45	.38
i8I	.27	.06	1.00	.1	1.28	2.0	.45	.43
i9I	.06	.06	.95	4	.93	6	.47	.44
i10I	15	.08	.98	1	.95	3	.42	.38
i11I	.09	.07	.80	-1.8	.78	-2.0	.53	.43
i12I	.16	.07	.85	-1.3	.85	-1.4	.53	.45
i13I	.03	.07	.98	1	1.08	.6	.43	.41
i14I	42	.09	.87	-1.5	.82	-1.7	.47	.37
i15I	.04	.07	.96	3	1.04	.4	.50	.47
Mean	.00	.07	1.00	.0	1.10	.8		
SD	.18	.01	.19	1.7	.36	2.8		

Table 22: Internal Locus of Control Item Location and Item Fit Statistics for White Respondents: Study 1

4.1.5.5 External Locus of Control Black

Item locations and fit statistics for the External locus of control scale for Black respondents are provided in Table 23. The item locations ranged from -.44 to .50 logits. No items demonstrated overfit or underfit.

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр
i1E	03	.04	1.05	.7	1.07	.9	.42	.45
i2E	.08	.04	.98	3	.91	-1.1	.46	.44
i3E	.07	.04	1.01	.1	1.12	1.2	.42	.42
i4E	.06	.04	.96	5	.93	-1.0	.49	.46
i5E	.23	.04	.91	-1.0	.88	-1.2	.44	.40
i6E	.37	.04	.81	-2.2	.74	-2.6	.46	.38
i7E	15	.04	.99	2	.97	3	.50	.49
i8E	44	.04	1.15	2.2	1.16	2.2	.48	.54
i9E	.50	.04	1.04	.4	1.31	1.9	.32	.35
i10E	.22	.04	.91	-1.1	.86	-1.3	.45	.41
i11E	23	.03	.96	5	1.03	.5	.51	.51
i12E	28	.04	1.14	2.0	1.12	1.7	.47	.52
i13E	07	.04	1.01	.2	1.19	2.3	.47	.47
i14E	16	.04	.95	8	.96	6	.52	.50
i15E	18	.04	1.16	2.1	1.32	4.0	.39	.47
Mean	.00	.04	1.00	.1	1.04	.4		
SD	.25	.00	.09	1.2	.16	1.7		

Table 23: External Locus of Control Item Location and Item Fit Statistics for Black Respondents: Study 1

4.1.5.6 External Locus of Control White

Item locations and fit statistics for the External locus of control scale for White respondents are provided in Table 24. The item locations ranged from -.77 to .59 logits. Two items demonstrated underfit, one using both fit measures, and the other using the Outfit MNSQ, but not using the Infit MNSQ.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр
i1E	.05	.05	.97	3	.91	-1.0	.56	.54
i2E	.05	.05	1.13	1.3	1.34	3.1	.47	.53
i3E	.03	.06	1.02	.2	1.07	.7	.52	.51
i4E	.34	.06	.98	2	.97	3	.53	.51
i5E	.11	.05	1.01	.1	.92	7	.52	.51
i6E	.32	.06	.86	-1.3	.86	-1.2	.54	.48
i7E	11	.05	.94	7	.91	-1.0	.59	.57
i8E	77	.05	.97	3	.99	.0	.62	.62
i9E	.34	.05	1.28	2.5	2.30	5.7	.39	.48
i10E	.59	.05	.79	-2.4	.78	-1.8	.57	.49
i11E	16	.05	.87	-1.5	.90	-1.1	.59	.56
i12E	42	.05	1.41	4.6	1.44	4.7	.46	.61
i13E	01	.06	.86	-1.7	.81	-2.1	.59	.52
i14E	22	.05	.83	-2.3	.85	-1.8	.65	.58
i15E	13	.05	1.19	2.1	1.32	3.2	.47	.56
Mean	.00	.05	1.01	.0	1.09	.4		
SD	.32	.00	.17	1.9	.38	2.4		

Table 24: External Locus of Control Item Location and Item Fit Statistics for White Respondents: Study 1

4.1.6 Construct validity combined sample

Construct validity of the three-factor model was investigated using confirmatory factor analysis with robust maximum likelihood estimation (Satorra & Bentler, 1988). The fit statistics for the three factor model were: robust χ^2 (942) = 1756.824, p < .001, CFI = .847, TLI = .840, RMSEA = .037 (.034 - .039), SRMR = .055. However, the baseline RMSEA was < .158 and therefore the CFI

and TLI may not be informative (Kenny, 2015). All of the factor loadings were statistically significant. The R² values ranged from .04 to .40. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .791, Autonomy and External locus of control = -.381, and Internal locus of control and External locus of control = -.536. The average variance extracted for each factor was: Autonomy = .240, Internal locus of control = .182, and External locus of control = .272. The unstandardised and standardised factor loadings are provided in Table 25. Convergent and discriminant validity of the three scale constructs was investigated using the technique described by McDonald (1999). Convergent/discriminant validity coefficients are obtained using coefficient ω and inter-factor correlations⁴. For the combined sample group each scale score was highly correlated with its respective factor and had smaller correlations with other factors. The Autonomy and Internal locus of control scales did, however, appear to display somewhat limited discriminant validity.

Item	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.52	.06	9.32	< .001	.35	.13
i2A	.49	.04	12.70	< .001	.47	.22
i3A	.52	.04	12.30	< .001	.47	.22
I4A	.40	.04	10.52	< .001	.41	.17
i5A	.53	.05	10.46	< .001	.44	.19
i6A	.56	.04	13.17	< .001	.57	.33
i7A	.50	.04	13.87	< .001	.51	.26
i8A	.44	.03	15.89	< .001	.58	.33
i9A	.46	.05	10.01	< .001	.40	.16
i10A	.33	.03	11.38	< .001	.40	.16
i11A	.45	.04	10.44	< .001	.42	.17

Table 25: Unstandardised and Standardised Factor Loadings: Study 1

⁴ Convergent-discriminant validity matrices are not reproduced in this report.

⁴⁰

i12A	.65	.04	18.41	< .001	.62	.39
i13A	.56	.03	16.36	< .001	.58	.33
i14A	.60	.03	18.42	< .001	.63	.40
i15A	.59	.04	15.66	< .001	.60	.36
i1l	.26	.05	5.01	< .001	.21	.05
i2I	.55	.05	12.06	< .001	.49	.24
i3I	.39	.05	8.38	< .001	.35	.12
i4I	.50	.04	13.26	< .001	.56	.31
i5I	.22	.04	4.95	< .001	.19	.04
i6I	.51	.04	14.14	< .001	.52	.27
i7I	.39	.03	12.17	< .001	.47	.22
i8I	.66	.05	14.71	< .001	.52	.27
i9I	.37	.05	7.10	< .001	.29	.09
i10I	.30	.03	1.04	< .001	.35	.12
i11I	.61	.05	12.35	< .001	.51	.26
i12I	.56	.04	13.95	< .001	.56	.32
i13I	.40	.05	8.25	< .001	.35	.12
i14I	.36	.03	12.67	< .001	.52	.27
i15I	.46	.04	13.35	< .001	.47	.22
i1E	.71	.06	11.75	< .001	.49	.24
i2E	.68	.06	11.22	< .001	.47	.22
i3E	.71	.06	11.50	< .001	.50	.25
i4E	.78	.06	12.81	< .001	.52	.27
i5E	.81	.06	13.00	< .001	.55	.30
i6E	.85	.06	14.88	< .001	.62	.39
i7E	.91	.06	15.29	< .001	.57	.32
i8E	.75	.06	12.14	< .001	.48	.23
i9E	.60	.07	8.23	< .001	.40	.16
i10E	.92	.06	15.42	< .001	.60	.36

i11E	1.03	.06	17.28	< .001	.59	.35
i12E	.61	.07	9.32	< .001	.38	.15
i13E	.83	.06	14.35	< .001	.54	.29
i14E	1.02	.06	16.77	< .001	.61	.37
i15E	.60	.07	8.99	< .001	.40	.16

4.1.7 Construct validity Men

The fit statistics for the three factor model for men were: robust χ^2 (942) = 1479.746, p < .001, CFI = .864, TLI = .857, RMSEA = .034 (.031 - .037), SRMR = .056. However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). All of the factor loadings were statistically significant. The R² values ranged from .04 to .46. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .826, Autonomy and External locus of control = -.439, and Internal locus of control and External locus of control = -.557. The average variance extracted for each factor was: Autonomy = .226, Internal locus of control = .180, and External locus of control = .283. The unstandardised and standardised factor loadings are provided in Table 26. Convergent/discriminant validity coefficients painted a similar picture for men as for the combined sample.

Item	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.54	.07	8.17	< .001	.36	.13
i2A	.46	.04	1.38	< .001	.43	.19
i3A	.49	.05	9.71	< .001	.45	.20
I4A	.41	.04	1.35	< .001	.43	.19
i5A	.47	.06	7.79	< .001	.39	.15
i6A	.49	.04	11.33	< .001	.53	.28

Table 26: Unstandardised and Standardised Factor Loadings for Men: Study 1

i7A	.50	.04	11.97	< .001	.51	.26
i8A	.46	.03	14.08	< .001	.58	.34
i9A	.45	.06	8.01	< .001	.39	.15
i10A	.36	.03	11.36	< .001	.45	.20
i11A	.39	.05	7.99	< .001	.37	.14
i12A	.65	.04	15.31	< .001	.60	.36
i13A	.51	.04	13.02	< .001	.54	.29
i14A	.58	.04	15.87	< .001	.60	.37
i15A	.61	.04	15.41	< .001	.62	.39
i1l	.28	.06	4.72	< .001	.23	.05
i2I	.53	.05	1.34	< .001	.47	.22
i3I	.36	.06	6.49	< .001	.32	.10
i4I	.57	.04	13.32	< .001	.61	.38
i5I	.21	.05	4.13	< .001	.19	.04
i6l	.51	.04	11.90	< .001	.50	.25
i7l	.38	.04	9.91	< .001	.44	.19
i8I	.65	.05	12.38	< .001	.49	.24
i9I	.42	.06	7.45	< .001	.34	.11
i10I	.29	.04	8.36	< .001	.34	.11
i11I	.60	.06	1.82	< .001	.49	.24
i12I	.56	.05	12.47	< .001	.56	.32
i13I	.39	.06	6.71	< .001	.32	.10
i14I	.39	.03	11.26	< .001	.53	.28
i15I	.47	.04	11.50	< .001	.48	.23
i1E	.73	.07	1.06	< .001	.49	.24
i2E	.70	.07	9.76	< .001	.47	.22
i3E	.75	.07	1.54	< .001	.52	.27
i4E	.77	.07	1.63	< .001	.50	.25
i5E	.82	.07	11.45	< .001	.56	.31

i6E	.98	.06	15.64	< .001	.68	.46
i7E	.95	.07	13.89	< .001	.58	.34
i8E	.75	.07	1.36	< .001	.47	.22
i9E	.65	.09	7.58	< .001	.41	.17
i10E	.98	.07	14.24	< .001	.61	.38
i11E	1.07	.07	15.78	< .001	.61	.37
i12E	.61	.08	8.05	< .001	.38	.15
i13E	.91	.06	14.94	< .001	.60	.36
i14E	1.03	.07	14.55	< .001	.60	.36
i15E	.58	.08	7.19	< .001	.38	.14

4.1.8 Construct validity Women

The fit statistics for the three factor model for women were: robust χ^2 (942) = 1368.543, p < .001, CFI = .738, TLI = .725, RMSEA = .053 (.047 - .059), SRMR = .089. However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). Two of the factor loadings were not statistically significant. The R² values ranged from .02 to .52. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .793, Autonomy and External locus of control = -.277, and Internal locus of control and External locus of control = .360. The average variance extracted for each factor was: Autonomy = .291, Internal locus of control = .184, and External locus of control = .223. The unstandardised and standardised factor loadings are provided in Table 27. Convergent/discriminant validity coefficients painted a similar picture for women as for the combined sample.

Item	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.44	.10	4.28	< .001	.32	.10
i2A	.56	.08	7.43	< .001	.58	.34
i3A	.62	.08	8.17	< .001	.55	.30
I4A	.36	.10	3.79	< .001	.34	.11
i5A	.68	.08	8.13	< .001	.57	.33
i6A	.78	.10	8.09	< .001	.69	.48
i7A	.52	.07	7.16	< .001	.52	.27
i8A	.39	.05	7.33	< .001	.58	.33
i9A	.45	.07	6.18	< .001	.44	.19
i10A	.21	.06	3.39	.001	.25	.06
i11A	.60	.08	7.21	< .001	.53	.29
i12A	.68	.07	1.45	< .001	.72	.52
i13A	.70	.07	1.41	< .001	.69	.47
i14A	.64	.07	9.79	< .001	.70	.49
i15A	.52	.09	5.70	< .001	.51	.26
i1l	.17	.09	1.82	.069	.15	.02
i2I	.54	.10	5.61	< .001	.54	.29
i3I	.43	.08	5.77	< .001	.42	.18
i4I	.29	.07	3.98	< .001	.37	.14
i5I	.27	.09	2.93	.003	.21	.05
i6I	.49	.08	6.42	< .001	.55	.30
i7I	.39	.05	7.40	< .001	.58	.34
i8I	.66	.09	7.42	< .001	.58	.34
i9I	.22	.12	1.89	.058	.16	.03
i10I	.29	.05	5.82	< .001	.38	.14

Table 27: Unstandardised and Standardised Factor Loadings for Women: Study 1

i11I	.62	.11	5.88	< .001	.55	.30
i12I	.56	.09	6.39	< .001	.56	.32
i13I	.44	.09	5.12	< .001	.44	.19
i14I	.28	.05	6.24	< .001	.46	.22
i15I	.45	.07	6.67	< .001	.46	.21
i1E	.63	.09	7.12	< .001	.50	.25
i2E	.65	.12	5.63	< .001	.50	.25
i3E	.58	.11	5.08	< .001	.44	.19
i4E	.76	.10	7.85	< .001	.58	.33
i5E	.72	.12	6.00	< .001	.51	.26
i6E	.32	.10	3.29	.001	.30	.09
i7E	.70	.11	6.63	< .001	.47	.23
i8E	.75	.12	6.12	< .001	.49	.24
i9E	.25	.09	2.83	.005	.21	.04
i10E	.56	.10	5.48	< .001	.46	.22
i11E	.87	.12	7.14	< .001	.51	.26
i12E	.60	.13	4.49	< .001	.38	.15
i13E	.61	.14	4.26	< .001	.39	.15
i14E	.93	.13	7.39	< .001	.62	.38
i15E	.63	.10	6.69	< .001	.48	.23

4.1.9 Construct validity Black

The fit statistics for the three factor model for Black respondents were: robust χ^2 (942) = 1327.817, p < .001, CFI = .861 TLI = .854, RMSEA = .033 (.029 - .059), SRMR = .037. However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). All of the factor loadings were statistically significant. The R² values ranged from .05 to .42. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .842, Autonomy and External locus of control = -.394, and Internal locus of control and External locus

of control = -.516. The average variance extracted for each factor was: Autonomy = .232, Internal locus of control = .183, and External locus of control = .246. The unstandardised and standardised factor loadings are provided in Table 28. Convergent/discriminant validity coefficients painted a similar picture for Black respondents as for the combined sample.

Item	Unstandardised	SE	Z-Value	p	Standardised	R ²
	Estimate				Estimate	
i1A	.60	.08	7.93	< .001	.38	.15
i2A	.48	.05	9.20	< .001	.44	.19
i3A	.60	.06	9.60	< .001	.50	.25
14A	.37	.05	6.80	< .001	.37	.14
i5A	.57	.07	7.99	< .001	.45	.20
i6A	.54	.05	1.15	< .001	.56	.32
i7A	.49	.05	9.67	< .001	.49	.24
i8A	.49	.04	13.58	< .001	.59	.35
i9A	.48	.07	6.86	< .001	.39	.15
i10A	.34	.04	8.24	< .001	.41	.17
i11A	.43	.06	7.30	< .001	.38	.14
i12A	.63	.05	12.66	< .001	.59	.34
i13A	.58	.05	12.64	< .001	.59	.34
i14A	.60	.05	13.01	< .001	.65	.42
i15A	.60	.06	1.82	< .001	.57	.33
i1l	.33	.07	4.85	< .001	.28	.08
i2I	.67	.07	1.06	< .001	.56	.31
i3I	.44	.06	7.23	< .001	.40	.16
i41	.43	.05	8.67	< .001	.52	.27
i5I	.23	.05	4.70	< .001	.27	.07

Table 28: Unstandardised and Standardised Factor Loadings for Black Respondents: Study 1

i6i.56.061.08 $<.01$.52.27i71.36.04 8.24 $<.001$.44.19i81.69.0612.18 $<.001$.55.30i91.29.08 3.81 $<.001$.23.05i101.30.047.09 $<.001$.36.13i111.56.07 8.07 $<.001$.43.19i121.51.06 9.12 $<.001$.51.26i131.42.08 5.62 $<.001$.33.11i141.33.04 8.09 $<.001$.51.26i151.40.05 8.48 $<.001$.41.17i1E.64.087.91 $<.001$.44.19i2E.73.08 8.85 $<.001$.49.24i3E.73.09 8.37 $<.001$.48.23i4E.80.089.51 $<.001$.55.25i5E.86.099.78 $<.001$.53.28i6E.87.0811.30 $<.001$.63.39i7E.88.091.21 $<.001$.40.16i9E.57.096.09 $<.001$.40.16i10E.90.091.34 $<.001$.55.31i11E1.05.097.54 $<.001$.40.16i13E.80.09.929							
i8i.69.0612.18<.001.55.30i9i.29.083.81<.001	i6I	.56	.06	1.08	< .001	.52	.27
i91.29.083.81<.001.23.05i101.30.047.09<.001	i7I	.36	.04	8.24	< .001	.44	.19
i101.30.047.09<.001.36.13i111.56.078.07<.001	i8I	.69	.06	12.18	< .001	.55	.30
i111.56.078.07<.001.43.19i121.51.069.12<.001	i9I	.29	.08	3.81	< .001	.23	.05
i121.51.069.12<.001.51.26i131.42.085.62<.001	i10I	.30	.04	7.09	< .001	.36	.13
i13i.42.085.62<.001.33.11i14i.33.048.09<.001	i11I	.56	.07	8.07	< .001	.43	.19
i14i.33.048.09<.001.51.26i15i.40.058.48<.001	i12I	.51	.06	9.12	< .001	.51	.26
i151.40.058.48<.001.41.17i1E.64.087.91<.001	i13I	.42	.08	5.62	< .001	.33	.11
i1E.64.087.91<.001.44.19i2E.73.088.85<.001	i14I	.33	.04	8.09	< .001	.51	.26
i2E.73.088.85<.001.49.24i3E.73.098.37<.001	i15I	.40	.05	8.48	< .001	.41	.17
i3E.73.098.37<.001.48.23i4E.80.089.51<.001	i1E	.64	.08	7.91	< .001	.44	.19
i4E.80.089.51<.001.50.25i5E.86.099.78<.001	i2E	.73	.08	8.85	< .001	.49	.24
i5E.86.099.78<.001.57.32i6E.87.0811.30<.001	i3E	.73	.09	8.37	< .001	.48	.23
i6E.87.0811.30<.001.63.39i7E.88.091.21<.001	i4E	.80	.08	9.51	< .001	.50	.25
i7E.88.091.21<.001.53.28i8E.65.097.55<.001	i5E	.86	.09	9.78	< .001	.57	.32
i8E.65.097.55<.001.40.16i9E.57.096.09<.001	i6E	.87	.08	11.30	< .001	.63	.39
i9E.57.096.09<.001.40.16i10E.90.091.34<.001	i7E	.88	.09	1.21	< .001	.53	.28
i10E.90.091.34<.001.55.31i11E1.05.0912.23<.001	i8E	.65	.09	7.55	< .001	.40	.16
i11E1.05.0912.23<.001.55.31i12E.65.097.54<.001	i9E	.57	.09	6.09	< .001	.40	.16
i12E.65.097.54<.001.40.16i13E.80.099.29<.001	i10E	.90	.09	1.34	< .001	.55	.31
i13E.80.099.29<.001.49.24i14E.96.091.81<.001	i11E	1.05	.09	12.23	< .001	.55	.31
i14E .96 .09 1.81 <.001 .55 .30	i12E	.65	.09	7.54	< .001	.40	.16
	i13E	.80	.09	9.29	< .001	.49	.24
i15E .55 .09 5.92 <.001 .37 .13	i14E	.96	.09	1.81	< .001	.55	.30
	i15E	.55	.09	5.92	< .001	.37	.13

4.1.10 Construct validity White

The fit statistics for the three factor model for White respondents were: robust χ^2 (942) = 1592.288, *p* < .001, CFI = .786, TLI = .775, RMSEA = .050 (.046 - .054), SRMR = .037. However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). Two factor loadings were non-significant. The R² values ranged from .00 to .48. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .732, Autonomy and External locus of control = -.385, and Internal locus of control and External locus of control = .584. The average variance extracted for each factor was: Autonomy = .257, Internal locus of control = .192, and External locus of control = .318. The unstandardised and standardised factor loadings are provided in Table 29. Convergent/discriminant validity coefficients painted a similar picture for Black respondents as for the combined sample.

Item	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.40	.08	4.83	< .001	.31	.10
i2A	.49	.06	8.75	< .001	.52	.27
i3A	.42	.05	8.64	< .001	.46	.21
I4A	.45	.05	8.70	< .001	.46	.22
i5A	.45	.07	6.61	< .001	.40	.16
i6A	.60	.07	8.62	< .001	.59	.34
i7A	.53	.05	1.25	< .001	.56	.31
i8A	.38	.04	9.07	< .001	.57	.33
i9A	.41	.05	8.37	< .001	.42	.18
i10A	.30	.04	7.57	< .001	.37	.14
i11A	.48	.06	7.93	< .001	.47	.23
i12A	.66	.05	14.40	< .001	.66	.44

Table 29: Unstandardised and Standardised Factor Loadings for White Respondents: Study 1

i13A	.55	.05	11.01	< .001	.59	.34
i14A	.60	.04	13.60	< .001	.61	.38
i15A	.56	.05	11.99	< .001	.63	.40
i1l	.13	.08	1.67	.095	.11	.01
i2I	.40	.06	6.91	< .001	.43	.18
i3I	.28	.08	3.64	< .001	.25	.06
i4I	.58	.06	1.18	< .001	.60	.36
i5I	.09	.08	1.17	.242	.07	.00
i6I	.45	.04	1.10	< .001	.52	.27
i7I	.41	.05	8.44	< .001	.50	.25
i8I	.60	.08	8.02	< .001	.47	.22
i9I	.48	.06	7.85	< .001	.38	.15
i10I	.27	.04	6.66	< .001	.32	.10
i11I	.70	.06	1.92	< .001	.67	.45
i12I	.63	.06	1.83	< .001	.63	.40
i13I	.39	.05	7.46	< .001	.40	.16
i14I	.38	.04	9.47	< .001	.53	.28
i15I	.50	.05	1.14	< .001	.53	.28
i1E	.80	.09	8.86	< .001	.57	.32
i2E	.63	.09	6.93	< .001	.45	.20
i3E	.68	.09	7.94	< .001	.52	.27
i4E	.77	.09	8.85	< .001	.57	.33
i5E	.74	.09	8.78	< .001	.54	.29
i6E	.83	.09	9.75	< .001	.62	.38
i7E	.94	.08	12.09	< .001	.62	.38
i8E	.86	.09	1.13	< .001	.58	.34
i9E	.63	.11	5.50	< .001	.40	.16
i10E	.95	.08	11.82	< .001	.68	.46
i11E	1.00	.08	12.56	< .001	.67	.45

i12E	.57	.10	5.56	< .001	.36	.13
i13E	.87	.07	13.19	< .001	.65	.42
i14E	1.08	.08	13.78	< .001	.70	.48
i15E	.66	.09	7.18	< .001	.45	.20

4.1.11 Measurement invariance

A nested model approach was used to investigate measurement invariance by creating increasingly constrained models (Vandenberg & Lance, 2000). Four models were stipulated: (M1) configural invariance (the same factor structure across both groups), (M2) metric/weak invariance (equality of factor loadings), (M3) scalar/strong invariance (equality of factor loadings and indicator intercepts), and (M4) strict invariance (equality of factor loadings, indicator intercepts, indicator residuals) (Brown, 2015). Comparison of the different levels of invariance was investigated by inspecting scale-corrected χ^2 differences and Δ CFI values (Satorra & Bentler, 2001). A Δ CFI value > .010 (Cheung & Rensvold, 2002) was used to indicate substantial difference in model fit (Hirschfeld & Brachel, 2014). Because the null model RMSEA < .158 the Δ CFI values must be interpreted with caution. The results indicated that scalar equivalence was tenable for Gender and that metric equivalence was tenable for ethnicity.

Model	χ ²	df	p	CFI	RMSEA
Model 1: Configural	2858.229	1884	< .001	.829	.040
Model 2: Metric	2932.581	1926	< .001	.823	.040
Model 3: Scalar	3015.065	1968	< .001	.816	.041
Model 4: Strict	3220.630	2013	< .001	.788	.043
	$\Delta \chi^2$	∆ df	Р	Δ CFI	
Model 1 vs. Model 2	74.69	42	.001	.006	
Model 2 vs. Model 3	99.34	42	< .001	.007	
Model 3 vs. Model 4	702.51	45	< .001	.028	

Table 30: Measurement Invariance for Gender: Study 1

Note. Δ CFI < .01 in bold.

Because the full three factor model had a baseline RMSEA < .158 measurement invariance was further investigated on each factor individually. The results for gender indicated that metric equivalence was viable for the Autonomy factor and that scalar equivalence was viable for the Internal locus of control factor. Metric equivalence was not established for the External locus of control factor. For ethnicity Autonomy and External locus of control demonstrated metric invariance. Metric invariance was not established for the Internal locus of control factor. Partial-measurement invariance was not investigated⁵. Rather, item response theory was used to investigate differential item functioning at the item level and differential test functioning was used to investigate overall differential item functioning across each scale.

⁵ Full measurement invariance may not be met because of some ideas displaying non-invariance.

Model	χ ²	df	р	CFI	RMSEA
Model 1: Configural	2914.467	1884	< .001	.822	.041
Model 2: Metric	2980.101	1926	< .001	.818	.041
Model 3: Scalar	3222.197	1968	< .001	.784	.044
Model 4: Strict	3533.573	2013	< .001	.738	.048
	$\Delta \chi^2$	∆ df	Р	Δ CFI	
Model 1 vs. Model 2	65.78	42	.011	.004	
Model 2 vs. Model 3	1630.53	42	< .001	.034	
Model 3 vs. Model 4	217.97	45	< .001	.046	

Table 31: Measurement Invariance for Ethnicity: Study 1

Note. Δ CFI < .01 in bold.

4.1.12 Differential item functioning

Uniform and non-uniform DIF was investigated by subjecting for each scale the standardised residuals of the Rasch analysis to a two-way ANOVA with gender/ethnicity and trait level as independent variables and expected item score as dependent variable (Andrich & Hagquist, 2014). From a DIF perspective an interaction of trait and group membership indicates non-uniform DIF, whereas a main effect for group membership indicates uniform DIF. Following the guidelines of Andrich and Hagquist (2014), a Bonferroni⁶ correction was applied to the *p* values for each ANOVA analysis. A DIF contrast \geq .50 logits was used to indicate practical significance of uniform DIF (Linacre, 2014; Tennant & Pallant, 2007). The results for Gender indicate that no items displayed statistically significant uniform DIF. One item displayed statistically significant non-uniform DIF. For Ethnicity four items demonstrated statistically significant uniform DIF. However, only one item had practically significant DIF. One item for ethnicity displayed statistically significant non-uniform DIF.

⁶ The Bonferroni correction was applied to the numbers of items only (i.e., .05 divided by 15), not to the number of hypotheses (i.e., .05 divided by 45). This was done to conserve power.

Item	Uniform			Non-Uni	form DIF
	F	р	Contrast	F	p
i1A	2.888	.090	.09	1.592	.175
i2A	.001	.975	.00	.468	.760
i3A	4.493	.034	15	.565	.688
I4A	.151	.698	.00	3.681	.006
i5A	4.160	.042	17	1.002	.406
i6A	4.413	.036	.27	.764	.549
i7A	.775	.379	.04	.130	.971
i8A	.321	.571	11	1.441	.219
i9A	4.430	.036	22	1.364	.245
i10A	1.797	.181	.00	2.564	.037
i11A	1.655	.199	05	1.321	.261
i12A	2.207	.138	15	1.114	.349
i13A	3.639	.057	.27	1.584	.177
i14A	1.131	.288	.12	1.460	.213
i15A	1.280	.258	.10	.348	.845
i1l	.202	.653	.10	2.208	.067
i2I	.089	.765	04	1.831	.121
i3I	1.384	.240	05	.902	.462
i4I	.494	.482	18	2.302	.057
i5I	3.507	.062	.28	.598	.664
i6I	.014	.906	09	.712	.584
i7I	1.373	.242	17	1.775	.132
i8I	.123	.726	.00	1.628	.165
i9I	.082	.775	.06	1.655	.159

Table 32: Uniform and Non-Uniform DIF by Gender: Study 1

i10I	.013	.908	.00	2.195	.068
i11I	.508	.476	.06	1.277	.278
i12I	.435	.510	09	.486	.746
i13I	.750	.387	05	.929	.447
i14I	1.207	.272	25	1.105	.353
i15I	.123	.726	.04	.292	.883
i1E	.206	.650	04	.319	.866
i2E	1.249	.264	06	.592	.669
i3E	5.689	.017	17	1.401	.232
i4E	.107	.743	.04	1.380	.239
i5E	1.972	.161	06	1.022	.395
i6E	.682	.409	.10	4.977	.001
i7E	1.034	.310	.05	.850	.494
i8E	.503	.478	03	.523	.719
i9E	3.291	.070	.12	1.715	.145
i10E	8.398	.004	.24	2.350	.053
i11E	.113	.737	.03	.736	.568
i12E	.036	.849	03	.505	.732
i13E	3.577	.059	12	1.790	.129
i14E	.046	.830	.00	.808	.520
i15E	.096	.757	.00	2.664	.032

Note. Bonferroni *p* value = .003.

ltem		Uniform			Non-Uniform DIF	
	F	р	Contrast	F	p	
i1A	.013	.910	.05	.727	.574	
i2A	1.593	.207	12	.503	.733	
i3A	5.034	.025	.25	1.002	.406	
I4A	.037	.848	09	2.654	.032	
i5A	2.749	.098	08	2.927	.020	
i6A	.858	.355	.02	1.147	.333	
i7A	.443	.506	.00	1.801	.127	
i8A	4.834	.028	.24	.595	.666	
i9A	.085	.771	.00	1.023	.394	
i10A	.756	.385	09	1.410	.229	
i11A	.013	.908	.00	.343	.849	
i12A	.335	.563	07	.561	.691	
i13A	6.879	.009	.23	.473	.756	
i14A	.640	.424	13	.515	.725	
i15A	4.793	.029	19	.123	.974	
i1l	4.979	.026	08	2.238	.064	
i2l	15.273	.000	.36	.825	.509	
i3I	1.640	.201	04	1.119	.347	
i4I	.160	.689	06	1.821	.123	
i5I	85.133	.000	72	3.522	.007	
i6I	2.861	.091	.12	2.396	.049	
i7I	.368	.545	11	.328	.859	
i8I	.196	.658	.05	.767	.547	
i9I	7.331	.007	.15	6.146	.000	
i10I	.482	.488	15	1.330	.257	

Table 33: Uniform and Non-Uniform DIF by Ethnicity: Study 1

i11I	8.390	.004	.21	.598	.664
i12I	7.339	.007	.14	1.455	.214
i13I	8.561	.004	.30	1.349	.250
i14I	4.103	.043	33	.665	.617
i15I	2.029	.155	18	1.455	.214
i1E	.098	.755	.00	2.617	.034
i2E	.548	.460	.00	1.505	.199
i3E	4.055	.044	.13	1.159	.328
i4E	11.295	.001	23	.440	.780
i5E	4.387	.037	.11	1.578	.179
i6E	6.301	.012	.13	.711	.584
i7E	.741	.390	03	.341	.851
i8E	5.661	.018	.14	3.065	.016
i9E	3.724	.054	.15	.116	.977
i10E	.413	.521	02	.232	.920
i11E	4.441	.035	13	2.401	.049
i12E	.642	.423	.06	1.723	.143
i13E	14.356	.000	23	2.032	.088
i14E	1.087	.298	.03	.322	.863
i15E	1.419	.234	07	.848	.495

Note. Bonferroni *p* value = .003.

4.1.13 Differential test functioning

The combined effect of DIF across each scale was investigated using the differential test functioning procedures described by Penfield and Algina (2006). Their approach is an unsigned variance-based technique and is appropriate for dichotomous and polytomous items (Penfield, 2007; Penfield & Algina, 2006). It is based on the Liu and Agresti (1996) cumulative common odds ratio (for polytomous items). The variance of the generalised DIF effect is given as an unweighted

and weighted value denoted by v^2 . Weighted v^2 was used as an indicator of differential test functioning in this analysis. Suggested differential test functioning interpretation criteria for v^2 is small = < .07, medium = .07 to .14, and large > .14 (Penfield & Algina, 2006). The DIFAS (Penfield, 2005) software was used to calculate v^2 . The results are presented in Table 34. The results indicate minimal differential test functioning across the three scales for gender. For ethnicity, the Autonomy scale demonstrated minimal evidence of differential test functioning. The External scale demonstrated small to medium differential test functioning, while the Internal locus of control scale demonstrated large differential test functioning.

Table 34: Differential Test Functioning: Study 1

Scale	Gender v ²	Ethnicity v ²
Autonomy	.021	.029
Internal locus of control	.014	.196
External locus of control	.024	.074

4.1.14 Correlation coefficients

Pearson correlation coefficients and Spearman-rho rank order correlation coefficients for the LCI 5th edition scales are reported in Table 35. Inspection of the non-parametric Loess regression lines (Cleveland, 1979) indicated that for the most part the relationships between the variables were linear. Inspection of multivariate normality using Mardia's coefficient (Mardia, 1970) and contour plots found that bivariate normality was not met across the three scales. The correlation coefficients had medium to large effect sizes (Cohen, 1988).

Table 35: Pearson and Spearman-Rho Rank Order Correlations: Study 1

	Autonomy	Internal LOC	External LOC
Autonomy	•	.62***	34***
Internal LOC	.62***		38***
External LOC	32***	38***	

Note. Pearson correlations below the diagonal, Spearman rho rank-order correlations above the diagonal. *** = p < .001.

4.1.15 Mean score differences for gender

Differences in group centroids for gender were investigated using Hotelling's T² test. The results indicate that there was a statistically significant difference in the group centroids between men and women [T²(3, 641) = 14.925, p < .001]. Post-hoc independent samples t tests with a Holm-Bonferroni correction were subsequently applied. The results indicated that there were small, but statistically significant, differences in the means for men and women on the Internal [M men = 91.77, SD = 7.68, M women = 93.66, SD = 7.11, t(643) = 2.753, $p = .012_{adj}$, d = .26] and External [M men = 43.65, SD = 13.31, M women = 39.14, SD = 10.68, t(643) = -3.895, $p_{adj} < .001$, d = .37] locus of control scales. There was not a statistically significant difference in the means for men and women on the Autonomy scale [M men = 88.86, SD = 8.19, M women = 87.38, SD = 8.90, t(643) = -1.942, $p_{adj} = .053$, d = .17].

4.1.16 Mean score differences for Ethnicity

Differences in group centroids for Ethnicity were investigated using Hotelling's T² test (caution must be used in interpretation of the results because scalar invariance was not established). The results indicate that there was a statistically significant difference in the group centroids between the Black and White respondents [T²(3, 641) = 8.467, p < .001]. Post-hoc independent samples t tests with a Holm-Bonferroni correction were subsequently applied. The results indicated that there was a statistically significant differences, in the means for Black and White

respondents on the Internal scale [*M* Black = 93.36, SD = 7.53, *M* White = 90.72, SD = 7.40, *t*(643) = 4.441, $p_{adj} < .001$, d = .35]. There were no statistically significant differences in the means for the Black and White respondents on the Autonomy [*M* Black = 89.01, SD = 8.63, *M* White = 87.78, SD = 8.01, *t*(643) = 1.854, p_{adj} = .128, d = .15] and External locus of control [*M* Black = 42.67, SD = 12.84, *M* White = 42.43, SD = 12.88, *t*(643) = .348, p_{adj} = .728, d = .02] scales.

4.1.17 Summary

Based on the results of Study 1, the LCI appears to have acceptable reliability across gender and ethnic groups. The three-factor structure is supported by the factor analysis, and the factors appear to be mostly unidimensional. Only one or two items demonstrated underfit using the Infit MNSQ measure in the comparison groups, but there was no evidence of misfit for the overall sample using the Infit MNSQ. Analysis of DIF indicated one case of non-uniform DIF across gender and ethnicity, and one item demonstrating practically significant DIF across ethnic groups. This does not necessarily indicate problems with these items because the DIF analyses are based on the sample rather than the population. Thus, further studies are required to investigate the psychometric properties of these items (i.e., cross-validations are required before definitive conclusions can be made). Further studies should also investigate differential test functioning. The mean differences across groups were generally small but do imply that caution must be used when comparing scores across groups.

4.2 Study 2

4.2.1 Descriptive Statistics

Descriptive statistics for the three scales are presented in Table 36. Histograms and bean plots for the scale scores are provided in Figure 4 to Figure 6. As with Study 1, the Autonomy and

Internal locus of control scales were negatively skewed and the External locus of control scale positively skewed.

Scale	Mean	SD	Median	Skewness	Kurtosis	SE
Autonomy	87.06	8.92	88.00	-0.28	-0.24	0.43
Internal	91.00	7.82	91.00	-0.33	-0.26	0.65
External	44.16	13.47	42.00	0.61	0.41	0.65

Table 36: Descriptive Statistics for the Scale Scores: Study 2

Note. SD = standard deviation, SE = Standard error.

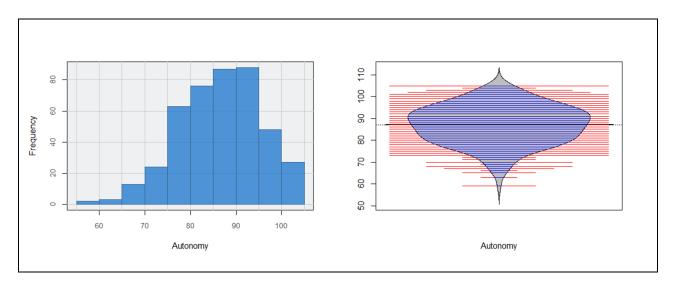


Figure 4: Histogram and beanplot for the Autonomy scale.

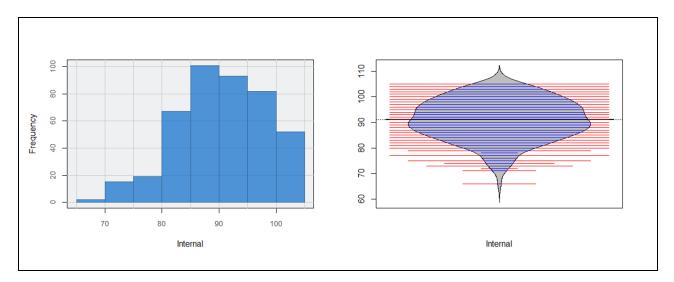


Figure 5: Histogram and beanplot for the Internal locus of control scale.

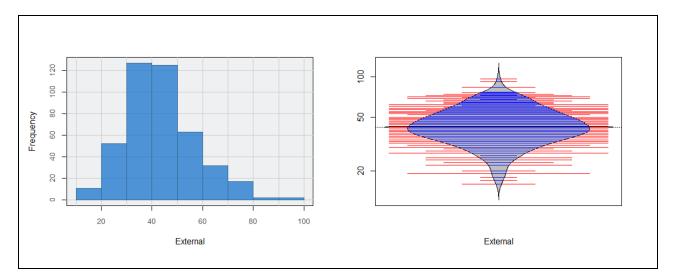


Figure 6: Histogram and beanplot for the External locus of control scale.

4.2.2 Reliability

Reliability coefficients for the scale items of the LCI 5th edition are presented in Table 37. Cronbach alpha coefficients (Cronbach, 1951), Guttman's Lambda 2 (Guttman, 1945), and McDonald's Omega total (McDonald, 1999; Revelle & Zinbarg, 2009) were used as measures of reliability. Item and Person separation reliability estimates from the Rasch analysis are also presented. As a whole the reliability coefficients were all acceptable.

Scale	α	λ ₂	ω	IR	PR	
Autonomy	.83 (.8086)	.83	.84	.95	.79	
Internal	.78 (.7482)	.78	.80	.89	.73	
External	.86 (.8389)	.86	.86	.98	.83	

Table 37: Reliability Coefficients for the Scale Items: Study 2

Note. 95% confidence intervals for α in parentheses. IR = Item separation reliability, PR = Person separation reliability.

Reliability coefficients for gender and ethnicity are provided in Tables 38 to 41. As for Study 1, comparison of Cronbach alpha coefficients across gender and ethnicity were conducted. The results indicated that there was no statistically significant difference in the alpha coefficients for men and women on the Autonomy (p = .71) and Internal locus of control (p = 1.00) scales. There was a statistically significant difference on the External locus of control (p = .03) scale.

Scale	α	Οα	λ2	ω	IR	PR
Autonomy	.82 (.7886)	.90	.84	.84	.92	.78
Internal	.78 (.7382)	.89	.78	.79	.81	.73
External	.87 (.8490)	.89	.87	.87	.97	.83

Table 38: Reliability Coefficients for the Scale Items for Men: Study 2

Note. 95% confidence intervals for α in parentheses.

Scale	α	0 α	λ ₂	ω	IR	PR
Autonomy	.83 (.7788)	.87	.83	.85	.91	.78
Internal	.78 (.7285)	.89	.79	.82	.84	.73
External	.82 (.7788)	.84	.83	.83	.96	.83

Table 39: Reliability Coefficients for the Scale Items for Women: Study 2

Note. 95% confidence intervals for α in parentheses.

For ethnicity there was a statistically significant difference in the alpha coefficients for the Autonomy (p = .01) and Internal locus of control (p = .01) scales. There was no difference in the alpha coefficients for the External locus of control scale (p = .26). However, because the reliability coefficients were high for all comparison groups, these differences are not seen to have a great impact on the overall interpretation of results on the scales across groups.

Table 40: Reliability Coefficients for the Scale Items for Black Respondents: Study 2

Scale	α	Οα	λ2	ω	IR	PR
Autonomy	.77 (.7184)	.88	.78	.80	.82	.73
Internal	.70 (.6178)	.89	.71	.72	.78	.67
External	.84 (.7989)	.86	.85	.84	.95	.79

Note. 95% confidence intervals for α in parentheses.

Table 41: Reliability Coefficients for the Scale Items for White Respondents: Study 2

Scale	α	Οα	λ ₂	ω	IR	PR
Autonomy	.86 (.8191)	.89	.87	.87	.86	.83
Internal	.81 (.7588)	.90	.82	.84	.80	.76
External	.87 (.8392)	.90	.88	.88	.95	.84

Note. 95% confidence intervals for α in parentheses.

4.2.3 Item Descriptive Statistics

The average inter-item correlation coefficients and item-total correlation coefficients for the LCI 5th edition scale items are presented in Tables 42 to 44. The average inter-item correlation coefficients and item-total correlation coefficients were positive across all the scales.

Item	Mean	SD	Average R	R Cor	R Drop
i1A	5.1	1.56	.27	.36	.33
i2A	5.5	1.06	.26	.53	.49
i3A	5.9	1.17	.27	.43	.39
I4A	5.9	1.05	.27	.38	.34
i5A	5.3	1.34	.27	.43	.40
i6A	5.9	1.12	.26	.57	.51
i7A	5.9	.99	.25	.60	.55
i8A	6.3	.78	.26	.54	.49
i9A	5.9	1.08	.27	.43	.38
i10A	6.4	.89	.27	.42	.38
i11A	5.9	1.09	.26	.51	.46
i12A	6.0	1.03	.25	.63	.58
i13A	5.6	1.05	.25	.62	.55
i14A	5.9	.93	.25	.67	.59
i15A	5.6	1.03	.26	.57	.52

Table 42: Item Level Descriptive Statistics for the Autonomy Scale: Study 2

Note. Average R = average inter-item correlation, R Cor = item whole correlation corrected for item overlap and scale reliability, R Drop = item whole correlation against the scale without the item.

Item	Mean	SD	Average R	R Cor	R Drop
i1l	5.6	1.24	.22	.23	.20
i2l	6.1	.98	.20	.51	.43
i3I	6.0	1.24	.20	.42	.36
i4I	6.3	.89	.20	.44	.39
i5I	6.0	1.14	.21	.29	.24
i6I	6.2	.95	.19	.59	.50
i7I	6.3	.91	.20	.57	.49
i8I	6.0	1.20	.20	.50	.43
i9I	5.9	1.19	.21	.40	.35
i10I	6.4	.92	.20	.46	.41
i11I	5.9	1.24	.21	.38	.33
i12I	5.9	.97	.19	.58	.51
i13I	6.0	1.15	.21	.35	.30
i14I	6.5	.70	.19	.61	.54
i15I	5.9	.99	.20	.48	.42

Table 43: Item Level Descriptive Statistics for the Internal Locus of Control Scale: Study 2

Note. Average R = average inter-item correlation, R Cor = item whole correlation corrected for item overlap and scale reliability, R Drop = item whole correlation against the scale without the item.

Item	Mean	SD	Average R	R Cor	R Drop
i1E	2.8	1.4	.29	.51	.47
i2E	2.8	1.5	.29	.49	.45
i3E	2.8	1.5	.29	.54	.49
i4E	2.5	1.5	.28	.57	.52
i5E	2.6	1.6	.28	.59	.55

Table 44: Item Level Descriptive Statistics for the External Locus of Control Scale: Study 2

i6E	2.3	1.5	.28	.60	.55
i7E	3.3	1.6	.28	.61	.57
i8E	4.2	1.5	.29	.51	.47
i9E	2.0	1.4	.30	.39	.36
i10E	2.5	1.6	.29	.54	.50
i11E	3.4	1.8	.29	.55	.50
i12E	3.8	1.6	.29	.50	.47
i13E	2.7	1.5	.28	.60	.55
i14E	3.3	1.7	.28	.66	.61
i15E	3.2	1.5	.30	.38	.34

Note. Average R = average inter-item correlation, R Cor = item whole correlation corrected for item overlap and scale reliability, R Drop = item whole correlation against the scale without the item.

4.2.4 Rasch analysis

A Rasch (1960) partial-credit model (Wright & Masters, 1982) analysis was conducted on each scale of the LCI 5th edition. The same criteria as previously discussed were used to investigate item fit.

4.2.4.1 Autonomy

Item locations and fit statistics for the Autonomy scale are provided in Table 45. The item locations ranged from -.48 to .53 logits. One item demonstrated underfit on both the Infit and Outfit MNSQ, while three items demonstrated underfit only on the Outfit MNSQ.

			Infit		Outfi	t	PT-Measure	
Item	Measure	SE _	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.53	.04	1.48	6.0	1.82	8.9	.44	.58
i2A	.15	.05	.97	4	1.05	.7	.54	.54
i3A	02	.05	1.11	1.2	1.41	4.2	.46	.49
I4A	.00	.05	1.12	1.3	1.43	4.5	.43	.49
i5A	.37	.05	1.21	2.6	1.48	5.6	.49	.56
i6A	.00	.05	.93	8	1.07	.9	.52	.49
i7A	09	.06	.85	-1.7	.83	-2.1	.55	.49
i8A	44	.07	.83	-1.7	.84	-1.8	.50	.42
i9A	03	.05	1.07	.8	1.26	2.7	.46	.48
i10A	48	.06	.99	.0	1.08	.7	.41	.40
i11A	04	.05	.98	2	1.11	1.3	.50	.50
i12A	18	.06	.85	-1.7	.84	-1.9	.56	.47
i13A	.17	.06	.89	-1.6	.90	-1.5	.58	.53
i14A	14	.06	.78	-3.1	.77	-3.3	.59	.49
i15A	.19	.06	.90	-1.1	.97	4	.58	.52
Mean	.00	.05	1.00	.0	1.12	1.2		
SD	.26	.01	.17	2.1	.29	3.3		

Table 45: Autonomy Item Location and Item Fit Statistics: Study 2

4.2.4.2 Internal Locus of Control

Item locations and fit statistics for the Internal locus of control scale are provided in Table 46. The item locations ranged from -.32 to .28 logits. Three items demonstrated underfit but only on the Outfit MNSQ.

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1l	.07	.05	1.35	4.4	1.62	6.9	.38	.52
i2I	14	.06	.94	6	1.13	1.4	.45	.43
i3I	.10	.05	1.04	.5	1.29	2.6	.42	.44
i41	17	.06	.93	7	1.02	.3	.44	.41
i5I	.08	.05	1.25	3.1	1.56	5.3	.35	.47
i6I	17	.06	.86	-1.4	.86	-1.5	.49	.42
i7I	09	.06	.87	-1.1	.84	-1.6	.47	.40
i8I	.27	.05	.96	4	1.11	1.1	.48	.44
i9I	.14	.05	1.06	.7	1.24	2.5	.44	.47
i10I	06	.06	.94	4	.88	-1.1	.42	.38
i11I	.28	.05	1.12	1.2	1.46	4.3	.45	.47
i12I	05	.06	.86	-1.7	.88	-1.5	.55	.48
i13I	.18	.05	1.12	1.2	1.39	3.7	.41	.45
i14I	32	.07	.77	-1.9	.64	-3.5	.47	.34
i15I	13	.06	1.02	.3	1.18	2.3	.47	.48
Mean	.00	.05	1.01	.2	1.14	1.4		
SD	.17	.01	.15	1.7	.28	2.8		

Table 46: Internal Locus of Control Item Location and Item Fit Statistics: Study 2

4.2.4.3 External Locus of Control

Item locations and fit statistics for the External locus of control scale are provided in Table 47. The item locations ranged from -.64 to .47 logits. One item demonstrated underfit on the Outfit MNSQ.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1E	.11	.04	1.01	.2	1.02	.4	.53	.53
i2E	.07	.04	1.05	.8	1.06	.8	.51	.54
i3E	.10	.04	1.00	.0	1.02	.3	.55	.54
i4E	.21	.04	.96	6	.98	2	.56	.53
i5E	.21	.04	.92	-1.1	1.15	1.7	.56	.53
i6E	.28	.04	.88	-1.5	1.13	1.3	.55	.51
i7E	19	.04	.91	-1.5	.87	-1.9	.61	.56
i8E	64	.04	1.06	.9	1.09	1.3	.56	.58
i9E	.47	.04	1.20	2.0	1.28	2.2	.43	.48
i10E	.21	.04	1.03	.4	.97	2	.54	.53
i11E	30	.03	1.05	.9	1.12	1.6	.55	.58
i12E	41	.04	1.09	1.3	1.12	1.8	.54	.59
i13E	.18	.04	.92	-1.2	.92	-1.0	.58	.54
i14E	08	.04	.83	-2.9	.81	-3.0	.64	.57
i15E	23	.04	1.27	3.7	1.41	5.2	.42	.55
Mean	.00	.04	1.01	.1	1.06	.7		
SD	.29	.00	.11	1.6	.15	1.9		

Table 47: External Locus of Control Item Location and Item Fit Statistics: Study 2

4.2.5 Rasch analysis gender

Rasch analysis⁷ was conducted separately for men and women. The same criteria as previously discussed were used to investigate item fit.

 $^{^7}$ As with Study 1 anchoring was used. Therefore the item locations are not on the same metric.

4.2.5.1 Autonomy men

Item locations and fit statistics for the Autonomy scale for men are provided in Table 48. The item locations ranged from -.45 to .43 logits. Three items demonstrated underfit, one on both the Infit and Outfit MNSQ, and the other two only on the Outfit MNSQ.

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.36	.05	1.52	4.9	1.86	6.9	.42	.55
i2A	.02	.07	.96	3	1.08	.9	.54	.54
i3A	.04	.06	1.17	1.4	1.61	4.5	.43	.48
14A	03	.07	1.11	.9	1.54	4.3	.41	.48
i5A	.32	.06	1.07	.8	1.28	2.7	.53	.56
i6A	30	.07	.84	-1.5	.94	6	.53	.46
i7A	07	.07	.88	9	.88	-1.1	.51	.47
i8A	38	.08	.81	-1.5	.85	-1.3	.48	.42
i9A	.06	.06	1.10	.8	1.37	2.9	.46	.48
i10A	45	.08	.98	1	1.04	.3	.40	.39
i11A	01	.06	.99	1	1.18	1.6	.48	.49
i12A	12	.07	.95	4	.92	7	.52	.46
i13A	.43	.07	.88	-1.4	.90	-1.2	.57	.52
i14A	10	.08	.81	-1.9	.81	-1.9	.55	.47
i15A	.23	.07	.94	4	1.04	.4	.56	.52
Mean	.00	.07	1.00	.0	1.15	1.2		
SD	.25	.01	.18	1.6	.31	2.5		

Table 48: Autonomy Item Location and Item Fit Statistics for Men: Study 2

Note. IMNSQ and OMNSQ \geq 1.4 or \leq .60 in bold.

4.2.5.2 Autonomy women

Item locations and fit statistics for the Autonomy scale for women are provided in Table 49. The item locations ranged from -.61 to .62 logits. Two items demonstrated underfit on both the Infit and Outfit MNSQs.

			Infit		Outfit		PT-Measure	
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1A	.62	.07	1.48	3.8	1.74	5.3	.41	.63
i2A	.16	.09	.97	2	1.04	.4	.52	.52
i3A	11	.08	1.02	.2	1.07	.6	.55	.54
14A	19	.09	1.14	1.0	1.24	1.7	.46	.52
i5A	.23	.07	1.43	3.1	1.95	6.2	.38	.59
i6A	.07	.08	1.06	.5	1.30	2.1	.51	.55
i7A	04	.10	.81	-1.8	.78	-2.1	.65	.52
i8A	61	.11	.82	-1.4	.76	-1.9	.58	.43
i9A	18	.09	.99	.0	.99	.0	.50	.49
i10A	52	.10	1.02	.2	1.16	.9	.43	.43
i11A	.11	.09	.98	2	1.01	.1	.53	.52
i12A	23	.10	.69	-3.0	.66	-3.1	.69	.50
i13A	.22	.08	.93	6	.92	6	.59	.56
i14A	.48	.10	.75	-2.7	.73	-2.8	.68	.52
i15A	.00	.10	.84	-1.3	.84	-1.3	.63	.52
Mean	.00	.09	1.00	2	1.08			
SD	.32	.01	.22	1.8	.35			

Table 49: Autonomy Item Location and Item Fit Statistics for Women: Study 2

Note. IMNSQ and OMNSQ \geq 1.4 or \leq .60 in bold.

4.2.5.3 Internal locus of control men

Item locations and fit statistics for the Internal locus of control scale for men are provided in Table 50. The item locations ranged from -.31 to .28 logits. One item demonstrated overfit and two items demonstrated underfit based on the Outfit MNSQs.

			Infit		Outfi	t	PT-Measure		
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp	
i1l	.07	.06	1.33	3.3	1.66	5.8	.40	.52	
i2I	09	.07	.94	4	1.21	1.7	.45	.44	
i3I	12	.06	1.02	.2	1.18	1.4	.43	.44	
i4I	09	.07	.90	8	1.02	.2	.46	.42	
i5I	.02	.06	1.26	2.5	1.55	4.0	.33	.45	
i6I	14	.07	.92	6	.90	8	.48	.42	
i7I	05	.07	.91	6	.89	8	.45	.40	
i8I	.28	.06	.98	1	1.22	1.7	.47	.44	
i9I	.11	.06	1.00	.0	1.12	1.1	.47	.47	
i10I	04	.07	1.00	.0	.94	3	.38	.37	
i11I	.27	.06	1.08	.7	1.31	2.4	.47	.47	
i12I	.01	.07	.90	8	.93	6	.53	.48	
i13I	.18	.06	1.03	.3	1.27	2.1	.45	.45	
i14I	31	.08	.74	-1.6	.60	-2.9	.45	.34	
i15I	12	.07	1.10	1.0	1.35	3.3	.42	.47	
Mean	.00	.07	1.01	.2	1.14	1.2			
SD	.16	.01	.14	1.2	.26	2.1			

Table 50: Internal	l Locus of Contro	l Item Location and	l Item Fit Statistics f	for Men: Study 2
--------------------	-------------------	---------------------	-------------------------	------------------

4.2.5.4 Internal locus of control women

Item locations and fit statistics for the Internal locus of control scale for women are provided in Table 51. The item locations ranged from -.31 to .28 logits. One item demonstrated overfit and two items demonstrated underfit using Outfit MNSQs.

			Infit		Outfi	t	PT-Mea	sure
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1l	.07	.06	1.33	3.3	1.66	5.8	.40	.52
i2l	09	.07	.94	4	1.21	1.7	.45	.44
i3I	12	.06	1.02	.2	1.18	1.4	.43	.44
i4I	09	.07	.90	8	1.02	.2	.46	.42
i5I	.02	.06	1.26	2.5	1.55	4.0	.33	.45
i6l	14	.07	.92	6	.90	8	.48	.42
i7l	05	.07	.91	6	.89	8	.45	.40
i8I	.28	.06	.98	1	1.22	1.7	.47	.44
i9I	.11	.06	1.00	.0	1.12	1.1	.47	.47
i10I	04	.07	1.00	.0	.94	3	.38	.37
i11I	.27	.06	1.08	.7	1.31	2.4	.47	.47
i12I	.01	.07	.90	8	.93	6	.53	.48
i13I	.18	.06	1.03	.3	1.27	2.1	.45	.45
i14I	31	.08	.74	-1.6	.60	-2.9	.45	.34
i15I	12	.07	1.10	1.0	1.35	3.3	.42	.47
Mean	.00	.07	1.01	.2	1.14	1.2		
SD	.16	.01	.14	1.2	.26	2.1		

Table 51: Internal Locus of Control Item Location and Item Fit Statistics for Women: Study 2

4.2.5.5 External Locus of Control Men

Item locations and fit statistics for the External locus of control scale for men are provided in Table 52. The item locations ranged from -.61 to .46 logits. No items demonstrated overfit or underfit.

			Infit	:	Outfi	t	PT-Measure		
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp	
i1E	.08	.05	.98	3	.95	5	.56	.54	
i2E	.06	.05	1.01	.1	.99	.0	.56	.55	
i3E	.12	.05	1.05	.6	1.16	1.6	.52	.54	
i4E	.19	.05	1.04	.5	1.05	.5	.55	.55	
i5E	.32	.05	.91	-1.0	1.34	3.0	.55	.53	
i6E	.22	.05	.92	8	1.31	2.5	.53	.52	
i7E	17	.05	.85	-2.0	.82	-2.1	.64	.57	
i8E	61	.05	1.05	.7	1.09	1.1	.57	.60	
i9E	.46	.05	1.19	1.8	1.21	1.4	.44	.49	
i10E	.17	.04	1.02	.2	.98	2	.56	.55	
i11E	37	.04	1.06	.8	1.09	1.0	.58	.61	
i12E	42	.05	1.10	1.2	1.15	1.8	.55	.60	
i13E	.17	.05	.93	8	.96	4	.59	.54	
i14E	08	.04	.82	-2.4	.79	-2.6	.67	.59	
i15E	15	.05	1.21	2.3	1.35	3.5	.43	.55	
Mean	.00	.05	1.01	.1	1.08	.7			
SD	.29	.00	.11	1.3	.17	1.7			

Table 52: External Locus of Control Item Location and Item Fit Statistics for Men: Study 2

4.2.5.6 External Locus of Control women

Item locations and fit statistics for the External locus of control scale for women are provided in Table 53. The item locations ranged from -.69 to .55 logits. Two items demonstrated underfit based on the Outfit MNSQs.

			Infit		Outfi	t	PT-Measure		
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Ехр	
i1E	12	.07	1.10	.9	1.16	1.3	.42	.48	
i2E	.21	.08	1.19	1.5	1.21	1.6	.43	.53	
i3E	28	.07	.81	-1.9	.79	-2.0	.62	.50	
i4E	.35	.07	.81	-1.6	.86	-1.0	.60	.52	
i5E	.01	.06	.87	-1.1	.84	-1.2	.57	.53	
i6E	.39	.08	.80	-1.5	.70	-1.9	.54	.42	
i7E	23	.06	.99	.0	.94	5	.56	.55	
i8E	69	.07	1.05	.4	1.07	.6	.55	.57	
i9E	.55	.08	1.25	1.3	1.50	2.1	.41	.49	
i10E	.43	.07	1.09	.7	1.02	.2	.50	.51	
i11E	11	.06	1.07	.7	1.21	1.6	.51	.54	
i12E	41	.06	1.08	.7	1.07	.6	.54	.56	
i13E	.25	.07	.89	9	.86	-1.1	.57	.53	
i14E	.05	.06	.85	-1.5	.84	-1.5	.61	.55	
i15E	39	.06	1.31	2.5	1.48	3.7	.40	.54	
Mean	.00	.07	1.01	.0	1.04	.2			
SD	.35	.01	.16	1.3	.23	1.6			

Table 53: External Locus of Control Item Location and Item Fit Statistics for Women: Study 2

4.2.6 Rasch analysis ethnicity

4.2.6.1 Autonomy Black

Item locations and fit statistics for the Autonomy scale for Black respondents are provided in Table 54. The item locations ranged from -.44 to .38 logits. Four items demonstrated underfit based on the Outfit MNSQs.

			Infit		Outfi	t	PT-Measure		
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp	
i1A	.38	.07	1.38	2.7	1.83	4.9	.40	.51	
i2A	.05	.09	.97	1	1.13	.9	.47	.49	
i3A	.03	.07	1.23	1.4	1.94	4.5	.36	.44	
I4A	09	.09	1.01	.1	1.38	2.3	.41	.44	
i5A	.35	.07	1.16	1.1	1.61	3.8	.45	.50	
i6A	18	.10	.88	6	1.01	.1	.47	.40	
i7A	20	.10	.93	4	.84	-1.1	.46	.42	
i8A	44	.12	.90	6	.92	5	.42	.36	
i9A	.00	.08	1.12	.8	1.53	2.8	.38	.42	
i10A	22	.10	.86	8	.90	5	.39	.34	
i11A	12	.09	.99	.0	1.08	.6	.46	.44	
i12A	06	.09	.87	6	.81	-1.0	.48	.39	
i13A	.27	.10	.91	8	.94	5	.54	.50	
i14A	.11	.11	.90	9	.89	9	.48	.42	
i15A	.11	.09	.99	.0	1.10	.7	.50	.46	
Mean	.00	.09	1.01	.1	1.19	1.1			
SD	.22	.01	.15	1.0	.36	2.0			

Table 54: Autonomy Item Location and Item Fit Statistics for Black Respondents: Study 2

4.2.6.2 Autonomy White

Item locations and fit statistics for the Autonomy scale for White respondents are provided in Table 55. The item locations ranged from -.54 to .51 logits. Two items demonstrated underfit based on the Outfit MNSQs.

			Infit		Outfi	t	PT-Measure		
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp	
i1A	.51	.09	1.27	2.1	1.28	2.1	.57	.65	
i2A	.45	.12	.99	.0	1.02	.2	.58	.58	
i3A	.01	.12	.97	1	1.00	.0	.56	.54	
14A	12	.11	1.28	1.4	1.78	4.0	.38	.54	
i5A	.42	.10	1.26	1.8	1.46	3.1	.51	.61	
i6A	08	.12	.86	-1.0	.81	-1.4	.62	.55	
i7A	.21	.12	.85	-1.0	.88	8	.58	.53	
i8A	54	.13	.81	-1.2	.74	-1.6	.59	.47	
i9A	24	.12	1.19	.9	1.32	1.7	.45	.50	
i10A	51	.12	1.04	.3	1.14	.7	.45	.46	
i11A	.01	.11	.90	7	1.06	.4	.57	.56	
i12A	29	.11	.94	3	1.07	.5	.57	.52	
i13A	.29	.12	.88	8	.91	7	.62	.57	
i14A	21	.12	.78	-1.4	.80	-1.4	.65	.54	
i15A	.08	.11	.97	1	1.01	.1	.61	.57	
Mean	.00	.11	1.00	.0	1.08	.5			
SD	.32	.01	.17	1.1	.27	1.6			

Table 55: Autonomy Ite	m Location and Item	I Fit Statistics for Whit	e Respondents: Study 2

4.2.6.3 Internal locus of control Black

Item locations and fit statistics for the Internal locus of control scale for Black African respondents are provided in Table 56. The item locations ranged from -.44 to .32 logits. Two items demonstrated underfit based on the Outfit MNSQs.

Table 56: Internal Locus of Control Item Location and Item Fit Statistics for Black Respondents:Study 2

			Infit		Outfi	t	PT-Measure		
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp	
i1l	.10	.07	1.11	.9	1.31	2.0	.43	.47	
i2I	.03	.08	.96	2	1.38	2.1	.40	.41	
i3I	.08	.07	1.09	.6	1.29	1.3	.35	.37	
i4I	11	.10	.90	6	.90	6	.42	.37	
i5I	36	.10	1.10	.8	1.34	1.6	.28	.34	
i6I	02	.08	.88	6	.81	-1.0	.44	.38	
i7I	.06	.09	.88	5	.97	.0	.37	.35	
i8I	.20	.07	1.02	.2	1.36	1.7	.39	.37	
i9I	.05	.08	1.00	.1	1.14	.9	.43	.43	
i10I	11	.09	.86	6	.77	-1.1	.38	.33	
i11I	.32	.07	1.27	1.5	1.82	3.9	.36	.42	
i12I	.22	.10	.95	4	.99	1	.48	.46	
i13I	.04	.09	1.14	.9	1.42	2.4	.38	.43	
i14I	44	.13	.82	7	.66	-1.6	.37	.27	
i15I	08	.09	1.08	.6	1.25	1.6	.38	.40	
Mean	.00	.09	1.00	.1	1.16	.9			
SD	.19	.02	.12	.7	.30	1.5			

4.2.6.4 Internal locus of control White

Item locations and fit statistics for the Internal locus of control scale for White respondents are provided in Table 57. The item locations ranged from -.31 to .62 logits. Three items demonstrated underfit, one based on both the Infit and Outfit MNSQs, but the other two only on the Outfit MNSQs.

Table 57: Internal Locus of Control Item Location and Item Fit Statistics for White Respondents: Study 2

•								
			Infit		Outfi	t	PT-Mea	sure
ltem	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1I	.40	.10	1.49	3.1	1.69	4.2	.36	.58
i2I	27	.13	.80	-1.2	.71	-1.9	.56	.45
i3I	12	.10	1.06	.5	1.26	1.3	.45	.50
i4I	20	.11	1.05	.3	1.52	2.2	.43	.46
i5I	.38	.10	1.42	2.6	1.63	3.7	.39	.57
i6l	31	.14	.82	-1.4	.71	-1.9	.56	.44
i7I	14	.13	.71	-1.7	.61	-2.4	.59	.43
i8I	06	.10	.91	3	1.03	.2	.53	.46
i9I	.15	.10	1.09	.6	1.18	1.0	.47	.49
i101	31	.13	1.02	.2	1.03	.3	.44	.45
i11I	.01	.10	.99	.1	1.27	1.4	.52	.48
i12I	13	.12	.76	-1.9	.73	-2.0	.63	.51
i13I	.00	.09	1.06	.4	1.20	1.1	.50	.50
i14I	04	.15	.76	-2.2	.65	-2.2	.57	.40
i15I	.62	.12	1.09	.8	1.35	2.5	.47	.53
Mean	.00	.11	1.00	.0	1.10	.5		
SD	.27	.02	.22	1.5	.35	2.1		
				1.1				

4.2.6.5 External Locus of Control Black

Item locations and fit statistics for the External locus of control scale for Blacks are provided in Table 58. The item locations ranged from -.52 to .34 logits. One item demonstrated underfit based on the Outfit MNSQ.

			Infit	:	Outfi	t	PT-Measure		
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp	
i1E	.16	.06	1.01	.1	1.11	.9	.49	.51	
i2E	.08	.06	.93	5	.89	8	.57	.52	
i3E	.23	.06	.94	4	.85	-1.1	.55	.50	
i4E	.04	.06	1.14	1.3	1.17	1.3	.49	.55	
i5E	.26	.06	.87	-1.0	1.70	3.9	.54	.51	
i6E	.28	.06	.95	4	1.04	.3	.53	.50	
i7E	16	.06	.97	3	.92	7	.58	.54	
i8E	52	.06	.88	-1.2	.88	-1.1	.63	.57	
i9E	.34	.06	1.06	.4	1.05	.3	.48	.48	
i10E	.21	.06	.98	1	.88	8	.54	.51	
i11E	43	.05	1.10	1.0	1.15	1.3	.54	.60	
i12E	41	.06	1.15	1.4	1.26	2.2	.47	.57	
i13E	.13	.06	1.06	.6	1.09	.8	.52	.53	
i14E	01	.06	.85	-1.5	.80	-1.9	.65	.57	
i15E	21	.06	1.24	2.0	1.37	2.7	.39	.53	
Mean	.00	.06	1.01	.1	1.08	.5			
SD	.27	.00	.11	1.0	.23	1.6			

Table 58: External Locus of Control Item Location and Item Fit Statistics for BlackRespondents: Study 2

4.2.6.6 External Locus of Control White

Item locations and fit statistics for the External locus of control scale are provided in Table 59. The item locations ranged from -.99 to .57 logits. No items demonstrated overfit or underfit.

Table 59:	External	Locus	of	Control	Item	Location	and	ltem	Fit	Statistics	for	White
Responder	nts: Study	2										

			Infit		Outfit		PT-Measure	
Item	Measure	SE	MNSQ	Z	MNSQ	Z	Corr	Exp
i1E	01	.08	1.01	.1	.96	2	.58	.55
i2E	.15	.08	1.15	1.2	1.14	1.1	.49	.55
i3E	.01	.08	.97	2	1.27	1.8	.56	.55
i4E	.39	.08	.83	-1.2	.77	-1.4	.61	.52
i5E	.16	.07	.93	4	.92	4	.58	.55
i6E	.30	.08	.72	-1.9	1.25	1.4	.57	.50
i7E	25	.07	.92	6	.90	8	.60	.58
i8E	99	.08	1.21	1.6	1.22	1.6	.53	.62
i9E	.57	.09	1.17	1.0	1.26	1.1	.42	.46
i10E	.19	.08	1.17	1.2	1.26	1.4	.51	.54
i11E	11	.07	1.05	.5	1.09	.7	.55	.59
i12E	40	.07	1.25	2.0	1.22	1.7	.53	.62
i13E	.31	.08	.75	-1.9	.69	-2.2	.64	.52
i14E	14	.08	.95	4	.92	6	.62	.59
i15E	17	.08	1.08	.6	1.20	1.4	.53	.57
Mean	.00	.08	1.01	.1	1.07	.4		
SD	.37	.00	.16	1.2	.19	1.2		

4.2.7 Construct validity

Construct validity of the three-factor model was investigated using confirmatory factor analysis with robust maximum likelihood estimation (Satorra & Bentler, 1988a, 1988b). The fit statistics for the three factor model were: robust χ^2 (942) = 1638.954, *p* < .001, CFI = .825, TLI = .816, RMSEA = .041 (.038 - .044), SRMR = .067). However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). All of the factor loadings were statistically significant. The R² values ranged from .04 to .45. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .746, Autonomy and External locus of control = -.391, and Internal locus of control and External locus of control = -.449. The unstandardised and standardised factor loadings are provided in Table 60. The same procedures described in Study 1 were used to evaluate convergent and discriminant validity of the scales. The convergent/discriminant validity coefficients again indicated evidence for discriminant validity between the scales, but that there Autonomy and Internal locus of control scales were closely related.

ltem	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate	-		r	Estimate	
i1A	.55	.08	7.08	< .001	.35	.12
i2A	.55	.05	1.94	< .001	.52	.27
i3A	.50	.06	8.64	< .001	.43	.18
I4A	.38	.06	6.41	< .001	.36	.13
i5A	.59	.07	8.66	< .001	.44	.19
i6A	.64	.06	11.07	< .001	.57	.33
i7A	.59	.05	13.11	< .001	.60	.36
i8A	.44	.04	11.70	< .001	.57	.32
i9A	.46	.05	8.93	< .001	.43	.18

Table 60: Unstandardised and Standardised Factor Loadings: Study 2

i10A	.36	.04	8.10	< .001	.40	.16
i11A	.56	.05	1.53	< .001	.51	.26
i12A	.67	.04	15.63	< .001	.65	.42
i13A	.64	.05	13.51	< .001	.61	.37
i14A	.62	.04	16.61	< .001	.67	.44
i15A	.59	.05	13.29	< .001	.58	.33
i1l	.24	.06	3.93	< .001	.20	.04
i2I	.50	.04	11.12	< .001	.51	.26
i3I	.56	.06	9.93	< .001	.45	.20
i4I	.43	.04	11.03	< .001	.48	.23
i5I	.30	.06	5.10	< .001	.26	.07
i6I	.55	.04	13.43	< .001	.58	.34
i7l	.50	.04	12.02	< .001	.55	.30
i8I	.60	.05	11.11	< .001	.50	.25
i9I	.45	.06	7.62	< .001	.38	.15
i10I	.38	.05	7.63	< .001	.42	.17
i11I	.50	.06	8.80	< .001	.40	.16
i12I	.54	.04	13.87	< .001	.56	.31
i13I	.37	.06	6.21	< .001	.33	.11
i14I	.43	.04	12.33	< .001	.61	.37
i15I	.52	.04	11.72	< .001	.52	.27
i1E	.72	.07	9.83	< .001	.51	.26
i2E	.72	.08	9.38	< .001	.49	.24
i3E	.81	.08	9.68	< .001	.53	.29
i4E	.87	.08	11.25	< .001	.57	.32
i5E	.94	.08	12.01	< .001	.60	.36
i6E	.89	.09	1.37	< .001	.60	.36
i7E	1.00	.07	14.14	< .001	.62	.38
i8E	.77	.07	1.53	< .001	.51	.26

i9E	.54	.08	6.79	< .001	.39	.15
i10E	.86	.08	1.19	< .001	.54	.29
i11E	.99	.08	12.03	< .001	.54	.29
i12E	.82	.07	11.10	< .001	.50	.25
i13E	.89	.07	12.44	< .001	.59	.35
i14E	1.11	.07	16.77	< .001	.67	.45
i15E	.57	.08	7.25	< .001	.38	.14

4.2.8 Construct validity Men

The fit statistics for the three factor model for men were: robust χ^2 (942) = 1433.909, p < .001, CFI = .810, TLI = .801, RMSEA = .043 (.039 - .047), SRMR = .077). However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). All of the factor loadings were statistically significant. The R² values ranged from .05 to .47. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .793, Autonomy and External locus of control = -.420, and Internal locus of control and External locus of control = -.428. The average variance extracted for each factor was: Autonomy = .246, Internal locus of control = .193, and External locus of control = .315. The unstandardised and standardised factor loadings are provided in Table 61. Convergent/discriminant validity coefficients painted a similar picture for men as for the combined sample.

ltem	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.52	.09	5.55	< .001	.34	.12
i2A	.55	.06	9.20	< .001	.52	.27
i3A	.43	.08	5.36	< .001	.37	.13
14A	.34	.08	4.36	< .001	.35	.12

Table 61: Unstandardised and Standardised Factor Loadings for Men: Study 2

i5A	.69	.08	8.59	< .001	.52	.27
i6A	.59	.06	1.77	< .001	.63	.40
i7A	.55	.06	8.56	< .001	.56	.32
i8A	.45	.05	8.53	< .001	.58	.33
i9A	.45	.07	6.68	< .001	.41	.17
i10A	.34	.06	6.23	< .001	.40	.16
i11A	.56	.07	8.58	< .001	.51	.26
i12A	.65	.06	11.23	< .001	.62	.38
i13A	.56	.06	1.17	< .001	.59	.34
i14A	.56	.05	11.74	< .001	.62	.39
i15A	.56	.06	9.60	< .001	.53	.28
i1l	.27	.08	3.32	.001	.21	.05
i2I	.53	.06	9.14	< .001	.52	.27
i3I	.52	.06	9.10	< .001	.45	.20
i4I	.47	.04	1.79	< .001	.52	.27
i5I	.27	.07	3.70	< .001	.24	.06
i6I	.58	.06	1.47	< .001	.57	.32
i7I	.50	.05	9.38	< .001	.53	.28
i8I	.63	.07	8.59	< .001	.49	.24
i9I	.43	.06	7.07	< .001	.41	.16
i10I	.34	.07	4.81	< .001	.35	.12
i11I	.54	.07	8.36	< .001	.44	.19
i12I	.50	.05	9.41	< .001	.51	.26
i13I	.42	.07	5.84	< .001	.36	.13
i14I	.43	.05	9.48	< .001	.60	.37
i15I	.43	.06	7.68	< .001	.45	.20
i1E	.82	.09	8.97	< .001	.56	.32
i2E	.86	.09	9.18	< .001	.55	.30
i3E	.81	.11	7.23	< .001	.52	.27

i4E	.87	.10	8.64	< .001	.53	.28
i5E	.97	.10	9.78	< .001	.61	.37
i6E	.91	.11	8.10	< .001	.57	.33
i7E	1.10	.09	12.50	< .001	.67	.45
i8E	.83	.09	9.27	< .001	.54	.29
i9E	.64	.10	6.61	< .001	.42	.18
i10E	.97	.11	8.93	< .001	.57	.33
i11E	1.03	.10	1.32	< .001	.56	.31
i12E	.84	.09	9.19	< .001	.51	.26
i13E	.92	.09	9.87	< .001	.60	.36
i14E	1.17	.08	13.96	< .001	.68	.47
i15E	.65	.10	6.54	< .001	.43	.19

4.2.9 Construct validity women

The fit statistics for the three factor model for women were: robust χ^2 (942) = 1410.500, p < .001, CFI = .740, TLI = .727, RMSEA = .057 (.051 - .063), SRMR = .083). However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). One factor loading was not statistically significant. The R² values ranged from .03 to .52. The inter-factor correlation coefficients were: Autonomy and Internal locus of control = .720, Autonomy and External locus of control = -.487, and Internal locus of control and External locus of control = .527. The average variance extracted for each factor was: Autonomy = .253, Internal locus of control = .5211, and External locus of control = .258. The unstandardised and standardised factor loadings are provided in Table 62. Convergent/discriminant validity coefficients painted a similar picture for women as for the combined sample.

Item	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.45	.13	3.63	< .001	.29	.09
i2A	.49	.09	5.65	< .001	.48	.23
i3A	.60	.07	8.21	< .001	.52	.27
I4A	.41	.09	4.85	< .001	.37	.14
i5A	.42	.12	3.40	.001	.32	.10
i6A	.65	.12	5.38	< .001	.50	.25
i7A	.62	.06	1.08	< .001	.64	.41
i8A	.47	.05	9.69	< .001	.60	.36
i9A	.48	.07	6.44	< .001	.47	.22
i10A	.37	.07	5.03	< .001	.39	.15
i11A	.53	.08	6.33	< .001	.50	.25
i12A	.68	.07	9.92	< .001	.71	.50
i13A	.68	.08	8.31	< .001	.59	.35
i14A	.67	.06	11.73	< .001	.72	.52
i15A	.62	.07	9.25	< .001	.66	.43
i1l	.21	.09	2.31	.021	.18	.03
i2I	.44	.07	6.36	< .001	.49	.24
i3I	.61	.12	5.07	< .001	.45	.20
i4I	.38	.07	5.20	< .001	.43	.18
i5I	.37	.09	3.89	< .001	.31	.10
i6I	.51	.06	8.74	< .001	.62	.39
i7I	.50	.07	7.75	< .001	.60	.36
i8I	.56	.07	8.49	< .001	.54	.29
i9I	.49	.12	3.98	< .001	.36	.13
i10I	.44	.05	8.87	< .001	.58	.34

Table 62: Unstandardised and Standardised Factor Loadings for Women: Study 2

i11I	.45	.10	4.34	< .001	.36	.13
i12I	.63	.05	11.92	< .001	.67	.44
i13I	.27	.10	2.57	.010	.24	.06
i14I	.43	.05	8.18	< .001	.64	.41
i15I	.66	.06	1.44	< .001	.64	.41
i1E	.52	.11	4.58	< .001	.39	.15
i2E	.39	.13	3.05	.002	.31	.10
i3E	.88	.09	9.38	< .001	.64	.41
i4E	.80	.11	7.24	< .001	.63	.39
i5E	.93	.13	7.28	< .001	.61	.37
i6E	.78	.11	7.17	< .001	.64	.41
i7E	.83	.11	7.75	< .001	.54	.29
i8E	.64	.13	5.03	< .001	.45	.20
i9E	.21	.12	1.84	.066	.20	.04
i10E	.52	.10	5.20	< .001	.41	.17
i11E	.77	.14	5.52	< .001	.47	.22
i12E	.73	.13	5.71	< .001	.47	.22
i13E	.84	.10	8.09	< .001	.59	.35
i14E	.98	.11	8.96	< .001	.63	.39
i15E	.46	.13	3.66	< .001	.30	.09

4.2.10 Construct validity Black

The fit statistics for the three factor model for Black respondents were: robust χ^2 (942) = 1240.981, p < .001, CFI = .744, TLI = .731, RMSEA = .046 (.039 - .052), SRMR = .090). However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). One factor loading was not statistically significant. The R² values ranged from .03 to .42. The interfactor correlation coefficients were: Autonomy and Internal locus of control = .777, Autonomy and External locus of control = -.338, and Internal locus of control and External locus of control =

-.381. The average variance extracted for each factor was: Autonomy = .195, Internal locus of control = .144, and External locus of control = .268. The unstandardised and standardised factor loadings are provided in Table 63. Convergent/discriminant validity coefficients painted a similar picture for Black respondents as for the combined sample.

ltem	Unstandardised	SE	Z-Value	р	Standardised	R ²
	Estimate				Estimate	
i1A	.46	.15	3.14	.002	.29	.09
i2A	.49	.09	5.52	< .001	.46	.22
i3A	.39	.14	2.79	.005	.29	.09
I4A	.36	.10	3.75	< .001	.37	.14
i5A	.60	.15	3.99	< .001	.42	.17
i6A	.54	.09	6.19	< .001	.57	.32
i7A	.53	.09	5.94	< .001	.54	.29
i8A	.33	.05	6.14	< .001	.48	.23
i9A	.41	.09	4.41	< .001	.36	.13
i10A	.40	.08	4.81	< .001	.49	.24
i11A	.43	.08	5.56	< .001	.42	.18
i12A	.63	.08	7.60	< .001	.60	.36
i13A	.57	.08	7.36	< .001	.57	.33
i14A	.43	.07	6.40	< .001	.54	.29
i15A	.49	.09	5.79	< .001	.45	.20
i1I	.39	.12	3.20	.001	.30	.09
i2I	.48	.08	6.03	< .001	.43	.18
i3I	.41	.09	4.42	< .001	.33	.11
i4I	.40	.06	6.89	< .001	.50	.25
i5I	.16	.09	1.89	.059	.18	.03

Table 63: Unstandardised and Standardised Factor Loadings For Black Respondents: Study 2

i6I	.60	.09	7.00	< .001	.55	.30
i7l	.38	.09	4.25	< .001	.38	.15
i8I	.47	.10	4.56	< .001	.38	.14
i9I	.38	.11	3.51	< .001	.34	.12
i10I	.38	.09	4.42	< .001	.42	.17
i11I	.42	.12	3.58	< .001	.29	.09
i12I	.49	.07	7.15	< .001	.51	.26
i13I	.28	.11	2.57	.010	.26	.07
i14I	.28	.05	6.03	< .001	.47	.22
i15I	.39	.08	5.25	< .001	.40	.16
i1E	.72	.13	5.43	< .001	.49	.24
i2E	.87	.14	6.07	< .001	.55	.30
i3E	.83	.15	5.69	< .001	.54	.30
i4E	.76	.16	4.81	< .001	.43	.18
i5E	.98	.16	6.01	< .001	.59	.35
i6E	.88	.15	5.88	< .001	.55	.31
i7E	.88	.13	6.97	< .001	.55	.30
i8E	.97	.12	8.17	< .001	.59	.35
i9E	.78	.17	4.74	< .001	.48	.23
i10E	.91	.16	5.76	< .001	.55	.30
i11E	.91	.15	6.19	< .001	.48	.23
i12E	.74	.14	5.25	< .001	.44	.19
i13E	.72	.14	5.14	< .001	.45	.20
i14E	1.17	.13	8.93	< .001	.65	.42
i15E	.56	.14	3.98	< .001	.35	.12

4.2.11 Construct validity White

The fit statistics for the three factor model for White respondents were: robust χ^2 (942) = 1331.030, p < .001, CFI = .773, TLI = .762, RMSEA = .058 (.051 - .064), SRMR = .085). However, the baseline RMSEA was < .158 and therefore the CFI and TLI may not be informative (Kenny, 2015). One factor loading was not statistically significant. The R² values ranged from .03 to .53. The interfactor correlation coefficients were: Autonomy and Internal locus of control = .798, Autonomy and External locus of control = -.628, and Internal locus of control and External locus of control = .575. The average variance extracted for each factor was: Autonomy = .304, Internal locus of control = .234, and External locus of control = .326. The unstandardised and standardised factor loadings are provided in Table 64. Convergent/discriminant validity coefficients painted a similar picture for White respondents as for the combined sample.

Item	Unstandardised	SE	Z-Value	p	Standardised	R ²
	Estimate				Estimate	
i1A	.67	.11	6.16	< .001	.50	.25
i2A	.49	.08	6.52	< .001	.54	.29
i3A	.52	.07	7.52	< .001	.55	.30
I4A	.30	.13	2.40	.017	.31	.10
i5A	.53	.10	5.22	< .001	.45	.21
i6A	.63	.07	8.91	< .001	.66	.44
i7A	.56	.09	6.52	< .001	.63	.40
i8A	.53	.05	9.97	< .001	.67	.45
i9A	.33	.07	4.48	< .001	.36	.13
i10A	.42	.08	4.99	< .001	.48	.23
i11A	.66	.09	7.42	< .001	.63	.39
i12A	.58	.07	8.97	< .001	.61	.37

Table 64: Unstandardised and Standardised Factor Loadings for White Respondents: Study 2

i13A	.56	.06	8.83	< .001	.59	.35
i14A	.63	.06	1.17	< .001	.69	.48
i15A	.58	.08	7.71	< .001	.60	.36
i1l	.21	.10	2.18	.029	.19	.03
i2l	.51	.07	6.96	< .001	.65	.42
i3I	.43	.08	5.10	< .001	.40	.16
i4I	.45	.08	6.09	< .001	.46	.21
i5I	.22	.11	1.91	.056	.18	.03
i6I	.51	.07	7.88	< .001	.69	.47
i7I	.57	.06	9.57	< .001	.70	.49
i8I	.58	.09	6.55	< .001	.58	.33
i9I	.44	.09	5.15	< .001	.39	.15
i10I	.25	.07	3.62	< .001	.30	.09
i11I	.54	.07	7.41	< .001	.54	.29
i12I	.66	.07	9.60	< .001	.71	.50
i13I	.48	.11	4.37	< .001	.41	.17
i14I	.44	.05	8.86	< .001	.69	.47
i15I	.48	.07	6.46	< .001	.53	.29
i1E	.74	.13	5.97	< .001	.54	.29
i2E	.69	.11	6.03	< .001	.51	.26
i3E	.84	.14	5.83	< .001	.60	.35
i4E	.91	.12	7.51	< .001	.67	.44
i5E	.99	.13	7.47	< .001	.64	.41
i6E	.93	.16	5.91	< .001	.69	.47
i7E	.97	.12	8.38	< .001	.63	.40
i8E	.61	.12	5.04	< .001	.44	.19
i9E	.56	.12	4.74	< .001	.45	.20
i10E	.76	.12	6.53	< .001	.49	.24
i11E	.88	.14	6.22	< .001	.56	.32

i12E	.68	.12	5.62	< .001	.43	.19
i13E	.96	.11	8.64	< .001	.73	.53
i14E	.88	.11	8.09	< .001	.59	.35
i15E	.72	.13	5.74	< .001	.52	.27

4.2.12 Measurement invariance

The same approach as described for Study 1 was used to investigate measurement invariance of the LCI scales across gender and ethnicity. The results indicated that metric equivalence was tenable for both gender and ethnicity. Because the full three factor model had a baseline RMSEA < .158 measurement invariance was further investigated one each factor individually. The results for gender indicated that metric equivalence was viable for all three factors. For ethnicity Autonomy demonstrated scalar invariance while Internal and External locus of control demonstrated metric invariance. As with study 1, partial-measurement invariance was not investigated.

Model	χ ²	df	р	CFI	RMSEA
Model 1: Configural	2846.045	1884	< .001	.783	.049
Model 2: Metric	2898.918	1926	< .001	.781	.048
Model 3: Scalar	3059.484	1968	< .001	.754	.051
Model 4: Strict	3216.269	2013	< .001	.729	.053
	$\Delta \chi^2$	Δdf	Р	Δ CFI	
Model 1 vs. Model 2	50.15	42	.182	.002	
Model 2 vs. Model 3	973.92	42	< .001	.027	
Model 3 vs. Model 4	141.03	45	< .001	.025	

Table 65: Measurement Invariance for Gender: Study 2

Note. Δ CFI < .01 in bold.

Model	χ ²	df	р	CFI	RMSEA
Model 1: Configural	2568.092	1884	< .001	.761	.051
Model 2: Metric	2610.363	1926	< .001	.761	.051
Model 3: Scalar	2781.813	1968	< .001	.716	.055
Model 4: Strict	2918.990	2013	< .001	.683	.057
	$\Delta \chi^2$	∆ df	Р	Δ CFI	
Model 1 vs. Model 2	39.63	42	.575	.000	
Model 2 vs. Model 3	*			.045	
Model 3 vs. Model 4	90.05	45	<. 001	.032	

Table 66: Measurement Invariance for Ethnicity: Study 2

Note. Δ CFI < .01 in bold. * Scaling factor negative.

4.2.13 Differential item functioning

Uniform and non-uniform DIF was investigated using the same procedure as described in Study 1. The results for gender indicate that no items displayed statistically significant uniform or nonuniform DIF. For ethnicity two items demonstrated statistically significant uniform DIF. However, only one item had practically significant DIF.

Item		Uniform		Non-Uni	form DIF
	F	р	Contrast	F	p
i1A	15.281	.000	.23	1.487	.205
i2A	1.192	.276	.08	1.611	.171
іЗА	1.203	.273	10	2.158	.073
I4A	.293	.589	06	.845	.497
i5A	.000	.989	12	1.093	.360

Table 67: Uniform and Non-Uniform DIF by Gender: Study 2

i6A	13.840	.000	.38	.266	.900
i7A	.007	.933	.10	.726	.575
i8A	11.410	.001	30	2.004	.093
i9A	6.888	.009	32	.386	.819
i10A	.544	.461	09	.869	.482
i11A	.073	.788	07	.246	.912
i12A	5.803	.016	13	.574	.681
i13A	.267	.605	.13	.325	.861
i14A	.014	.906	.10	.370	.830
i15A	.722	.396	06	1.425	.225
i1l	.723	.396	.03	1.597	.174
i2I	2.037	.154	20	.308	.873
i3I	.266	.606	.07	.602	.661
i4I	5.339	.021	31	1.616	.169
i5I	4.902	.027	.28	.798	.527
i6I	.279	.597	09	.918	.453
i7I	1.723	.190	12	.195	.941
i8I	1.466	.227	13	.404	.806
i9I	2.176	.141	.17	.084	.987
i10I	.017	.898	.02	1.787	.130
i11I	.133	.716	.00	1.022	.396
i12I	5.347	.021	21	1.310	.265
i13I	.128	.721	03	3.976	.004
i14I	1.219	.270	.10	2.838	.024
i15I	1.429	.233	.23	1.993	.095
i1E	.198	.656	.03	.486	.746
i2E	.585	.445	.06	2.311	.057
i3E	5.277	.022	24	3.170	.014
i4E	1.582	.209	.11	1.177	.320

i5E	6.176	.013	19	2.212	.067
i6E	5.028	.025	.19	2.642	.033
i7E	4.058	.045	15	.273	.895
i8E	1.546	.214	08	.504	.733
i9E	1.143	.286	.11	.683	.604
i10E	5.556	.019	.19	.444	.777
i11E	7.679	.006	.24	2.548	.039
i12E	.010	.922	.00	.514	.726
i13E	.069	.793	.00	.723	.577
i14E	1.519	.219	06	.437	.782
i15E	2.278	.132	.03	1.171	.323

Note. Bonferroni *p* value = .003.

Table 68: Uniform and Non-Uniform DIF by Ethnicity: Study 2

ltem		Uniform		Non-Uni	form DIF
	F	р	Contrast	F	р
i1A	.437	.509	02	1.225	.301
i2A	.304	.582	08	1.551	.188
i3A	2.146	.144	.23	1.597	.175
I4A	.844	.359	06	.893	.469
i5A	.021	.886	.05	.754	.556
i6A	.287	.593	15	1.816	.126
i7A	4.289	.039	24	1.845	.121
i8A	1.735	.189	.06	1.186	.317
i9A	.218	.641	.13	.600	.663
i10A	.153	.696	.05	.803	.524
i11A	.226	.635	.07	1.474	.210
i12A	.002	.961	.00	.572	.683

i13A	3.897	.049	.23	.733	.570
i14A	.067	.796	16	2.243	.065
i15A	1.711	.192	18	.165	.956
i1l	5.753	.017	15	3.426	.009
i2I	8.319	.004	.37	.725	.576
i3I	.218	.641	.00	.361	.836
i4I	.053	.819	.00	.342	.849
i5I	38.525	.000	80	.696	.595
i6I	7.057	.008	.34	1.486	.207
i7I	3.425	.065	.13	.239	.916
i8I	.513	.475	.08	.739	.566
i9I	1.016	.314	.12	.792	.531
i10I	.477	.490	06	.968	.425
i11I	3.016	.084	.23	1.065	.374
i12I	6.643	.010	.26	.775	.542
i13I	.375	.541	.00	1.099	.357
i14I	.903	.343	30	.657	.623
i15I	4.709	.031	31	.215	.930
i1E	1.122	.291	.12	1.446	.219
i2E	2.931	.088	.13	.866	.485
i3E	7.800	.006	.27	1.288	.275
i4E	8.548	.004	26	1.118	.348
i5E	1.692	.195	.17	1.360	.248
i6E	.002	.969	.00	1.399	.235
i7E	.175	.676	05	1.200	.311
i8E	4.550	.034	.23	3.210	.013
i9E	.033	.855	05	.757	.554
i10E	.551	.459	.06	.393	.814
i11E	16.847	.000	36	1.680	.155

i12E	.402	.526	.00	.651	.626
i13E	5.222	.023	23	.758	.553
i14E	.913	.340	.07	1.211	.306
i15E	.002	.969	.02	.640	.635

Note. Bonferroni *p* value = .003.

4.2.14 Differential test functioning

The combined effect of DIF across each scale was investigated using the same procedure as in Study 1. The results are presented in Table 69. The results indicate minimal differential test functioning across the Autonomy and Internal locus of control scales for gender. For ethnicity, the Autonomy scale demonstrated minimal evidence of differential test functioning. The External scale demonstrated medium to large differential test functioning, while the Internal locus of control scale demonstrated large differential test functioning.

Scale	Gender v ²	Ethnicity v ²
Autonomy	.01	.01
Internal locus of control	.05	.25
External locus of control	.09	.15

Table 69: Differential Test Functioning: Study 1

4.2.15 Correlation coefficients

Pearson correlation coefficients and Spearman-rho rank order correlation coefficients for the LCI 5th edition scales are reported in Table 70. Inspection of the non-parametric Loess regression lines (Cleveland, 1979) indicated that for the most part the relationships between the variables were linear. Inspection of multivariate normality using Mardia's coefficient (Mardia, 1970) and contour plots found that bivariate normality was not met across the three scales. The correlation coefficients had medium to large effect sizes (Cohen, 1988).

	Autonomy	Internal LOC	External LOC
Autonomy	•	.59***	39***
Internal LOC	.60***		37***
External LOC	36***	34***	

Table 70: Pearson and Spearman-Rho Rank Order Correlations: Study

Note. Pearson correlations below the diagonal, Spearman rho rank-order correlations above the diagonal. *** = p < .001.

4.2.16 Mean score differences for Gender

Differences in group centroids for Gender were investigated using Hoteling's T² test (caution must be used with interpretation of group differences because scalar invariance was not demonstrated). The results indicate that there was a statistically significant difference in the group centroids between men and women $[T^2(3, 426) = 16.569, p < .001]$. Post-hoc independent samples *t* tests with a Holm-Bonferroni correction were subsequently applied. The results indicated that there were statistically significant differences in the means for men and women on the Autonomy [*M* men = 88.44, SD = 8.62, *M* women = 84.58, SD = 8.98, *t*(428) = -4.387, *p*_{adj} = .000, *d* = .44] and External locus of control [*M* men = 45.53, SD = 14.37, *M* women = 41.76, SD = 11.34, *t*(377.50) = -2.990, *p*_{adj} = .006, *d* = 1.02] scales. There was no difference in the means for the Internal locus of control [*M* men = 45.53, SD = 14.37, *M* women = 41.76, SD = -2.40, *p*_{adj} = .810].

4.2.17 Mean score differences for Ethnicity

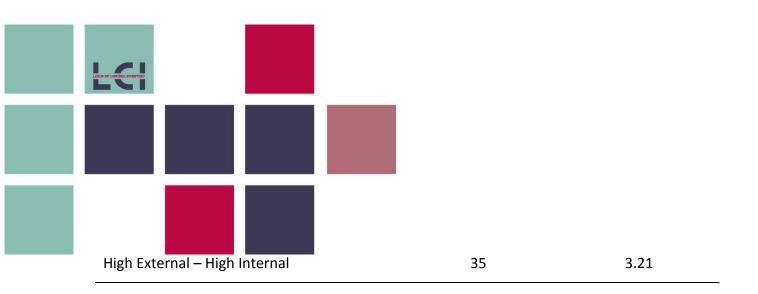
Differences in group centroids for Ethnicity were investigated using Hoteling's T² test (caution must be used with interpretation of group differences because scalar invariance was not demonstrated). The results indicate that there was a statistically significant difference in the group centroids between Black and White respondents $[T^2(3, 272) = 5.299, p = .001]$. Post-hoc independent samples *t* tests with a Holm-Bonferroni correction were subsequently applied. The results indicated that there were no statistically significant differences in the means for Black and White respondents on the three LCI 5th edition scales: Autonomy = [*M* Black = 89.75, SD = 8.00, *M* White = 87.48, SD = 8.67, *t*(274) = 2.256, *p_{adj}* = .075, *d* = .27], Internal locus of control = [*M* Black = 92.99, SD = 7.050, *M* White = 91.31, SD = 7.661, *t*(274) = 1.867, *p_{adj}* = .116, *d* = .23], and External locus of control = [*M* Black = 45.26, SD = 13.879, *M* White = 42.21, SD = 12.995, *t*(274) = 1.902, *p_{adj}* = .116, *d* = .23].

4.2.18 Summary

As with Study 1, the LCI appears to have acceptable reliability across gender and ethnic groups. The three-factor structure was again supported by the factor analysis, and the factors appear to be mostly unidimensional. Few items demonstrated underfit using the Infit MNSQ measure. There were one or two items that were somewhat problematic across both sample groups. These items are flagged for further research. As previously stated, cross-validation studies are required before definitive conclusions can be reached. For the most part there was little evidence of DIF across gender and ethnicity. However, there was some evidence of DTF on the Internal and External scales across ethnicity. In Study 1 the Internal scale also demonstrated large DTF. This means that caution should be used when comparing scores across ethnic groups because the metric is not the same (that is, group differences in scores may indicate a different metric rather than real group differences). The mean score differences across groups were generally small, except for the External locus of control scale for men and women. Because this result did not occur in Study 1, it is necessary that further research is done before making any definitive

conclusions. As previously stated, caution should be used when comparing scale scores across gender.

Image: Constraint of the second s


The LCI 4th edition norm scores for each respondent were compared to the LCI 5th edition norm scores. It is important to note that the norm scores are based on two different sample groups and therefore they will not be identical. Pearson's correlation coefficient was used to investigate the similarity between the two norm scores. The correlation coefficients were: Autonomy = .91, Internal locus of control = .90, and External locus of control = .93. As a whole the norm scores remained fairly consistent from the LCI 4th edition to the LCI 5th edition.

6. Frequency of profile scores

In this section the frequency of scores that are high and low on the Internal locus of control and External locus of control scales is presented. It would be expected that few respondents scored low or high on both these scales (Levenson, 1981). Three categories were created (low, average, and high) based on the standard deviations of the stanine norm scores. Inspection of Table 71 indicates that few respondents scored low or high on both the Internal and External locus of control scales (n = 53, 4.86%) while 195 (17.89%) of the respondents score high/low and low/high on the two scales. For the most part the respondents scored average on both scales (n = 355, 32.57%).

	Count	Percent
Low External – Low Internal	18	1.65
Low External – Average Internal	106	9.72
Low External – High Internal	105	9.63
Average External – Low Internal	136	12.48
Average External – Average Internal	355	32.57
Average External – High Internal	109	9.91
High External – Low Internal	90	8.26
High External – Average Internal	137	12.57

Table 71: Comparison of Norm Scores on the Internal and External Locus of Control Scales

7. R packages

The following R (R Core Team, 2015) packages were used in the analysis:

Psych (Revelle, 2015), lessR (Gerbing, 2015), beanplot (Kampstra, 2008), outliers (Komsta, 2011), mvoutlier (Filzmoser & Gschwandtner, 2015), MVN (Korkmaz, Goksuluk, & Zararsiz, 2015), cocron (Diedenhofen, 2013), Lambda4 (Hunt, 2013), lavaan (Rosseel, 2012), semTools (semTools contributors, 2016), DescTools (Signorell et al., 2016), and Korpus (Michalke, 2016), as well as all associated dependencies.

This technical manual details the development of the LCI 5th edition and the psychometric properties of the instrument across two different sample groups. Across both studies the LCI demonstrated acceptable reliability and validity. There is evidence of differential test functioning across ethnicity, which requires further investigation. As a whole, the results support the use of the LCI 5th edition in the South African context.

- Andrich, D., & Hagquist, C. (2015). Real and artificial differential item functioning in polytomous items. *Educational and Psychological Measurement*, 75(2), 185-207.
- Berg, A., Buys, M., Olckers, C., & Shaap, P. (2004). The comparability of the construct validity of Schepers' Locus of Control Inventory for first and second language respondents. South African Journal of Industrial Psychology, 30(3), 87-96.
- Bond, T. G., & Fox, C. M. (2007). *Applying the Rasch Model: Fundamental measurement in the human sciences* (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.
- Brown, T. A. (2015). *Confirmatory factor analysis for applied research* (2nd ed.). New York, NY: Guilford Press.
- Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. *Structural Equation Modeling*, *9*(2), 233-255.
- Cleveland, S. (1979). Robust locally weighted regression and smoothing scatterplots. *Journal of the American Statistical Association*, 74(368), 829-836.
- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Erlbaum.
- Coombs, W. N., & Schroeder, H. E. (1988). Generalized locus of control: An analysis of factor analytic data. *Personality and Individual Differences*, *9*, 79-85.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, *16*(3), 297-334.

- De Bruin, G. (2004). Problems with the factor analysis of items: Solutions based on item response theory and item parcelling. *South African Journal of Industrial Psychology, 30*(4), 16-26.
- Diedenhofen, B. (2013). cocron: Statistical comparisons of two or more alpha coefficients (Version 1.0-0). Retrieved from http://r.birkdiedenhofen.de/pckg/cocron/
- Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha. Applied Psychological Measurement, 11(1), 93-103.
- Filzmoser, P., & Gschwandtner, M. (2015). mvoutlier: Multivariate outlier detection based *on robust methods* (Version = 2.0.6). Retrieved from http://www.statistik.tuwien.ac.at/public/filz/
- Gerbing, D. W. (2015). lessR: Less Code, More Results (R package version 3.3.1. Retrieved from http://cran.r-project.org/web/packages/lessR/index.html.
- Guttman, L. (1945). A basis for analyzing test-retest reliability. *Psychometrika*, 10(4), 255-282.
- Hirschfeld, G., & von Brachel, R. (2014). Multiple-group confirmatory factor analysis in R: A tutorial in measurement invariance with continuous and ordinal indicators. *Practical Assessment, Research & Evaluation*, 19(7), 1-12.
- Hunt, T. (2013). Lambda4: Collection of Internal Consistency Reliability Coefficients (Version 3.0). Retrieved from https://cran.r-project.org/web/packages/Lambda4/index.html
- Kampstra, P. (2008). Beanplot: A boxplot alternative for visual comparison of distributions. *Journal of Statistical Software, 28*, 1-9.
- Kenny, D. A. (2015). Measuring model fit. Retrieved from http://davidakenny.net/cm/fit.htm
- Komsta, L. (2011). outliers: Tests for outliers (Version 0.14.). Retrieved from http://www.rproject.org/
- Korkmaz, S., Goksuluk, D., Zararsiz, G. (2014). MVN: An R Package for assessing multivariate normality. *The R Journal, 6*(2), 151-162.
- Lefcourt, H. M. (1966). Internal versus external control of reinforcement: A review. *Psychological Bulletin, 65*(4), 206-220.

- Levenson, H. (1981). Differentiating among internality, powerful others, and chance. In H. Lefcourt (Ed.), *Research with the locus of control construct* (Vol. 1, pp. 15 63). New York, NY: Academic Press.
- Linacre, J. M. (2016a). Misfit diagnosis: infit outfit mean-square standardized. Retrieved from http://www.winsteps.com/winman/diagnosingmisfit.htm
- Linacre, J. M. (2016b). Winsteps[®] (Version 3.92.0) [Computer Software]. Beaverton, Oregon: Winsteps.com. Retrieved January 1, 2016. Available from http://www.winsteps.com/
- Liu, I. M., & Agresti, A. (1996). Mantel-Haenszel-type inference for cumulative odds ratios with a stratified ordinal response. *Biometrics*, *52*, 1223-1234.
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. *Biometrika*, *57*(3), 519-530.
- McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum.
- Michalke, M. (2016). koRpus: An R Package for Text Analysis (Version 0.06-4). Available from http://reaktanz.de/?c=hacking&s=koRpus
- Murphy, K. R., & Davidshofer, C. O. (2005). *Psychological testing: Principles and applications* (6th ed.). Upper Saddle River, NJ: Pearson Education.
- Penfield, R. D. (2005). DIFAS: Differential item functioning analysis system. *Applied Psychological Measurement, 29,* 150-151.
- Penfield, R. D. (2007). An approach for categorizing DIF in polytomous items. *Applied Measurement in Education, 20*(3), 335-355.
- Penfield, R. D., & Algina, J. (2006). A generalized DIF effect variance estimator for measuring unsigned differential test functioning in mixed format tests. *Journal of Educational Measurment*, *43*(4), 295-312.
- Pervin, L. A., & John, O. P. (2001). *Personality: Theory and research* (8th ed.). New York, NY: John Wiley.
- R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Revelle, W. (2015) psych: Procedures for Personality and Psychological Research (Version = 1.5.6.). Retrieved from http://CRAN.R-project.org/package=psych.

- Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. *Psychometrika*, 74(1), 145-154.
- Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. *Journal of Statistical Software, 48*(2), 1-36. Retrieved from http://www.jstatsoft.org/v48/i02/
- Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. *Psychological Monographs: General and Applied, 80*, 1-28.
- Rotter, J. B. (1975). Some problems and misconceptions related to the construct of internal versus external control of reinforcement. *Journal of Consulting and Clinical Psychology*, 43, 56-67.
- Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. *Proceedings of the Business and Economic Statistics*. Alexandria, VA: American Statistical Association.
- Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. *Psychometrika*, 66(4), 507-514.
- Schaap, P., Buys, M. A., & Olckers, C. (2003). The construct validity of Schepers' Locus of Control Inventory for Black and White tertiary students. *South African Journal of Industrial Psychology*, 29(1), 32-43.
- Schepers, J. M. (2005). The construction of a normative scale of locus of control. *South African Journal of Industrial Psychology*, *31*(3), 1-11.
- Schepers, J. M. (2007). Validation of the revised edition (1995) of the Locus of Control Inventory. South African Journal of Industrial Psychology, 33(1), 80-89.

Schepers (2013). Technical manual: Locus of Control Inventory. Johannesburg: JvR Psychometrics.

- Schepers, J. M., Gropp, L., & Geldenhuys, D. J. (2006). The factor structure, metrical properties, and convergent validity of the third edition (1999) of the Locus of Control Inventory. *South African Journal of Industrial Psychology*, 32(2), 1-8.
- semTools Contributors. (2016). semTools: Useful tools for structural equation modeling. R package version 0.4-11. Retrieved from http://cran.r-project.org/package=semTools

Signorell, A., et. al. (2016). DescTools: Tools for descriptive statistics. R package version 0.99.16.

- Tennant, A., & Pallant, J. F. (2007). DIF matters: A practical approach to test if differential item functioning makes a difference. *Rasch Measurement Transactions*, *20*(4), 1082-1084.
- Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4-70.
- Wang, Q., Bowling, N. A., & Eschleman, K. J. (2010). A meta-analytic examination of work and general locus of control. *Journal of Applied Psychology*, *95*(4), 761-768.
- Wright, B. D., & Masters, G. N. (1982). *Rating Scale Analysis: Rasch Measurement*. Chicago, IL: MESA Press.
- Wright, B. D., Linacre, J. M., Gustafson, J. E., & Martin-Lof, P. (1994). Reasonable mean-square fit values. *Rasch Measurement Transactions*, *8*(3), 370.